Embedding Supernova Cosmology into a Bayesian Hierarchical Model

Xiyun Jiao
Statistic Section
Department of Mathematics
Imperial College London

Joint work with David van Dyk, Roberto Trotta \& Hikmatali Shariff

ICHASC Talk
Jan 27, 2015

Outline

(2) Combining Strategies
(3) Surrogate Distribution

4 Extensions on Cosmological Model
(5) Conclusion

Imperial College London

Problem Setting

- Goal: Sample from posterior distribution $p(\psi \mid Y)$ using Gibbs-type samplers.
- Special case: Data Augmentation (DA) Algorithm ${ }^{1}$ $\psi=\left(\theta, Y_{\text {mis }}\right)$. DA algorithm proceeds as:

$$
\left[Y_{\mathrm{mis}} \mid \theta^{\prime}\right] \longrightarrow\left[\theta \mid Y_{\mathrm{mis}}\right]
$$

Stationary distribution: $p\left(Y_{\text {mis }}, \theta \mid Y\right)$.
DA algorithm and Gibbs samplers are easy to implement, but.
\square
${ }^{1}$ Tanner, M. A. and Wong, W. H. (1987)

Problem Setting

- Goal: Sample from posterior distribution $p(\psi \mid Y)$ using Gibbs-type samplers.
- Special case: Data Augmentation (DA) Algorithm ${ }^{1}$ $\psi=\left(\theta, Y_{\text {mis }}\right)$. DA algorithm proceeds as:

$$
\left[Y_{\text {mis }} \mid \theta^{\prime}\right] \longrightarrow\left[\theta \mid Y_{\text {mis }}\right] .
$$

Stationary distribution: $p\left(Y_{\text {mis }}, \theta \mid Y\right)$.
DA algorithm and Gibbs samplers are easy to implement, but. . .

Converge slowly!

${ }^{1}$ Tanner, M. A. and Wong, W. H. (1987)

Algorithm Review

Blue Rectangle-Expand Paramter Space; Yellow Ellipse-Change Conditioning Strategy

Marginal Data Augmentation

Marginal Data Augmentation (MDA) ${ }^{2}$

- MDA introduces a working parameter α into $p\left(Y, Y_{\text {mis }} \mid \theta\right)$ via $Y_{\text {mis }}\left[\right.$ e.g., $\left.\tilde{Y}_{\text {mis }}=\mathcal{F}_{\alpha}\left(Y_{\text {mis }}\right)\right]$, s.t.,

$$
\int p\left(\tilde{Y}_{\mathrm{mis}}, Y \mid \theta, \alpha\right) \mathrm{d} \tilde{Y}_{\mathrm{mis}}=p(Y \mid \theta) .
$$

- If the prior distribution of α is proper, MDA proceeds as:

$$
\left[\alpha^{\star}, \tilde{Y}_{\text {mis }} \mid \theta^{\prime}\right] \longrightarrow\left[\alpha, \theta \mid \tilde{Y}_{\text {mis }}\right] .
$$

- MDA improves convergence by increasing variability in augmented data and reducing augmented information.

[^0]
Ancillarity-Sufficiency Interweaving Strategy

Ancillarity-Sufficiency Interweaving Strategy (ASIS) ${ }^{3}$

- ASIS considers a pair of special DA schemes:
- Sufficient augmentation $Y_{\text {mis }, s}: p\left(Y \mid Y_{\text {mis }, s}, \theta\right)$ is free of θ.
- Ancillary augmentation $Y_{\text {mis }, A}: p\left(Y_{\text {mis }, A} \mid \theta\right)$ is free of θ.
- Given $\theta, Y_{\text {mis }, A}=\mathcal{F}_{\theta}\left(Y_{\text {mis, } S}\right)$. ASIS proceeds as

Interweave $\left[\theta \mid Y_{\text {mis, } S}\right]$ into DA algorithm w.r.t. $Y_{\text {mis, } A}$

$$
\begin{aligned}
& {\left[Y_{\mathrm{mis}, S} \mid \theta^{\prime}\right] \rightarrow \frac{\boxed{\left[\theta^{\star} \mid Y_{\mathrm{mis}, S}\right] \rightarrow\left[Y_{\mathrm{mis}, A} \mid Y_{\mathrm{mis}, S}, \theta^{\star}\right]}}{\mathbb{~}} \rightarrow\left[\theta \mid Y_{\mathrm{mis}, A}\right]} \\
& {\left[Y_{\mathrm{mis}, S} \mid \theta^{\prime}\right] \rightarrow\left[Y_{\text {mis }, A} \mid Y_{\text {mis }, S}\right] \rightarrow\left[\theta \mid Y_{\text {mis }, A}\right]}
\end{aligned}
$$

- ASIS obtains more efficiency by taking advantage of the "beauty-and-beast" feature of two parent DA algorithms.
${ }^{3} \mathrm{Yu}, \mathrm{Y}$. and Meng, X.-L. (2011)

Understanding ASIS

- Model:

$$
Y\left|\left(Y_{\mathrm{mis}}, \theta\right) \sim \mathrm{N}\left(Y_{\mathrm{mis}}, 1\right), Y_{\mathrm{mis}}\right| \theta \sim \mathrm{N}(\theta, V), p(\theta) \propto 1
$$

- ASIS: $Y_{\text {mis }, S}=Y_{\text {mis }}, Y_{\text {mis }, A}=Y_{\text {mis }}-\theta$.

$$
\left[Y_{\mathrm{mis}, S} \mid \theta^{\prime}\right] \rightarrow\left[\theta^{\star} \mid Y_{\mathrm{mis}, S}\right] \rightarrow\left[Y_{\mathrm{mis}, A} \mid Y_{\mathrm{mis}, S}, \theta^{\star}\right] \rightarrow\left[\theta \mid Y_{\mathrm{mis}, A}\right]
$$

More directions: efficient and easy to implement.

Partially Collapsed Gibbs Sampling

Partially Collapsed Gibbs (PCG) ${ }^{4}$

- Model Reduction: PCG reduces conditioning of Gibbs. It replaces some conditional distributions of a Gibbs sampler with conditionals of marginal distributions of the target.
- PCG improves convergence by increasing variance and jump size of conditional distributions.
- Three stages: Marginalization, permutation, trimming.
- Tools to transform a Gibbs sampler into a PCG one.
- Maintain the target stationary distribution.

[^1]
Examples of PCG Sampling

Example. $\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right)$; Sample from $p(\psi \mid Y)$.

$$
\begin{gathered}
\text { Gibbs } \\
p\left(\psi_{1} \mid \psi_{2}^{\prime}, \psi_{3}^{\prime}, \psi_{4}^{\prime}\right) \\
p\left(\psi_{2} \mid \psi_{1}, \psi_{3}^{\prime}, \psi_{4}^{\prime}\right) \\
p\left(\psi_{3} \mid \psi_{1}, \psi_{2}, \psi_{4}^{\prime}\right) \\
p\left(\psi_{4} \mid \psi_{1}, \psi_{2}, \psi_{3}\right)
\end{gathered}
$$

PCG I

$$
\begin{aligned}
& p\left(\psi_{1} \mid \psi_{2}^{\prime}, \psi_{3}^{\prime}, \psi_{4}^{\prime}\right) \\
& p\left(\psi_{2}, \psi_{3} \mid \psi_{1}, \psi_{4}^{\prime}\right) \\
& p\left(\psi_{4} \mid \psi_{1}, \psi_{2}, \psi_{3}\right)
\end{aligned}
$$

PCG II

$$
\begin{aligned}
& p\left(\psi_{1} \mid \psi_{2}^{\prime}, \psi_{4}^{\prime}\right) \\
& p\left(\psi_{2}, \psi_{3} \mid \psi_{1}, \psi_{4}^{\prime}\right) \\
& p\left(\psi_{4} \mid \psi_{1}, \psi_{2}, \psi_{3}\right)
\end{aligned}
$$

- Special cases: blocked and collapsed Gibbs, e.g., PCG I.
- More interestingly, a PCG sampler consists of incompatible conditional distributions, e.g., PCG II. Modifying the order of steps of PCG II may alter its stationary distribution.

Three Stages to Derive a PCG Sampler

(a) Gibbs

$p\left(\psi_{1} \mid \psi_{2}^{\prime}, \psi_{3}^{\prime}, \psi_{4}^{\prime}\right)$
$p\left(\psi_{2} \mid \psi_{1}, \psi_{3}^{\prime}, \psi_{4}^{\prime}\right)$
$p\left(\psi_{3} \mid \psi_{1}, \psi_{2}, \psi_{4}^{\prime}\right)$
$p\left(\psi_{4} \mid \psi_{1}, \psi_{2}, \psi_{3}\right)$
(c) Permute
$p\left(\psi_{1}, \psi_{3}^{*} \mid \psi_{2}^{\prime}, \psi_{4}^{\prime}\right)$
$p\left(\psi_{2}^{\star}, \psi_{3} \mid \psi_{1}, \psi_{4}^{\prime}\right)$
$p\left(\psi_{2} \mid \psi_{1}, \psi_{3}, \psi_{4}^{\prime}\right)$
$p\left(\psi_{4} \mid \psi_{1}, \psi_{2}, \psi_{3}\right)$
(b) Marginalize
$p\left(\psi_{1}, \psi_{3}^{\star} \mid \psi_{2}^{\prime}, \psi_{4}^{\prime}\right)$
$p\left(\psi_{2}^{\star} \mid \psi_{1}, \psi_{3}^{\star}, \psi_{4}^{\prime}\right)$
$p\left(\psi_{2}, \psi_{3} \mid \psi_{1}, \psi_{4}^{\prime}\right)$
$p\left(\psi_{4} \mid \psi_{1}, \psi_{2}, \psi_{3}\right)$
(d) Trim [PCG II]
$p\left(\psi_{1} \mid \psi_{2}^{\prime}, \psi_{4}^{\prime}\right)$
$p\left(\psi_{2}, \psi_{3} \mid \psi_{1}, \psi_{4}^{\prime}\right)$
$p\left(\psi_{4} \mid \psi_{1}, \psi_{2}, \psi_{3}\right)$
" \star "-Intermediate Draws

Outline

(1) Algorithm Review

(2) Combining Strategies

(3) Surrogate Distribution

4 Extensions on Cosmological Model
(5) Conclusion

Combining Different Strategies into One Sampler

Cannot Sample Conditionals?

- Embed Metropolis-Hastings (MH) into Gibbs ${ }^{5}$ —standard.
- Embed MH into PCG ${ }^{6}$ —subtle implementation!

Further Improvement in Convergence

- Several parameters converge slowly-a strategy is efficient for one parameter, but has little effect on others; Another strategy has opposite effect. By combining, we improve all.
- One strategy alone is useful for all parameters-prefer to use a combination, as long as gained efficiency exceeds extra computational expense.

[^2]
Background

- Physics Nobel Prize (2011): discovery of acceleration of expansion of the universe.
- The acceleration is attributed to existence of dark energy.
- Type la supernova (SNla) observations: critical to quantify characteristics of dark energy.
Mass > "Chandrasekhar threshold" $\left(1.44 M_{\odot}\right) \Longrightarrow$ SN explosion.

"Standardizable Candles"

Common history \Longrightarrow similar absolute magnitudes for SNla, i.e.,

$$
M_{i} \sim \mathrm{~N}\left(M_{0}, \sigma_{\text {int }}^{2}\right)
$$

\Longrightarrow SNla are "standardizable candles".
Phillips corrections:

$$
M_{i}=M_{i}^{\epsilon}-\alpha x_{i}+\beta c_{i}, M_{i}^{\epsilon} \sim \mathrm{N}\left(M_{0}, \sigma_{\epsilon}^{2}\right) ;
$$

x_{i}-stretch correction, c_{i}-color correction,

$$
\sigma_{\epsilon}^{2} \leq \sigma_{\mathrm{int}}^{2}
$$

Distance Modulus

Apparent Magnitude - Absolute Magnitude = Distance Modulus:

$$
m_{B}-M=\mu=5 \log _{10}[\text { distance }(\mathrm{Mpc})]+25
$$

- Nearby SN: distance $=z c / H_{0}$;
- Distant SN: $\mu=\mu\left(z, \Omega_{m}, \Omega_{\Lambda}, H_{0}\right)$;
- c-speed of light
- H_{0} —Hubble constant
- z-redshift
- Ω_{m}-total matter density
- Ω_{Λ} —dark energy density

Bayesian Hierarchical Model ${ }^{7}$

- Level 1: Errors-in-variables regression:

$$
\begin{gathered}
m_{B i}=\mu_{i}+M_{i}^{\epsilon}-\alpha x_{i}+\beta c_{i} \\
\left(\begin{array}{c}
\hat{c}_{i} \\
\hat{x}_{i} \\
\hat{m}_{B i}
\end{array}\right) \sim \mathrm{N}\left[\left(\begin{array}{c}
c_{i} \\
x_{i} \\
m_{B i}
\end{array}\right), \hat{C}_{i}\right], i=1, \ldots, n
\end{gathered}
$$

- Level 2:

$$
M_{i}^{\epsilon} \sim \mathrm{N}\left(M_{0}, \sigma_{\epsilon}^{2}\right) ; x_{i} \sim \mathrm{~N}\left(x_{0}, R_{x}^{2}\right) ; c_{i} \sim \mathrm{~N}\left(c_{0}, R_{c}^{2}\right)
$$

- Priors:

Gaussian for M_{0}, x_{0}, c_{0}; Uniform for $\Omega_{m}, \Omega_{\Lambda}, \alpha, \beta, \log \left(R_{X}\right), \log \left(R_{C}\right), \log \left(\sigma_{\epsilon}\right)$. z and H_{0} fixed.

Notation and Data

Notation

- $X_{(3 n \times 1)}-\left(c_{1}, x_{1}, M_{1}^{\epsilon}, \ldots, c_{n}, x_{n}, M_{n}^{\epsilon}\right)$;
- $b_{(3 \times 1)}-\left(c_{0}, x_{0}, M_{0}\right)$;
- $L_{(3 n \times 1)}-\left(0,0, \mu_{1}, \ldots, 0,0, \mu_{n}\right)$;
- $T_{(3 \times 3)}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ \beta & -\alpha & 1\end{array}\right]$, and $A_{(3 n \times 3 n)}=\operatorname{Diag}(T, \ldots, T)$.

Data: A sample of 288 SNla compiled by Kessler et al. (2009).

Algorithms for Cosmological Herarchical Model

- MH within Gibbs sampler: Update of $\left(\Omega_{m}, \Omega_{\Lambda}\right)$ needs MH.
- MH within PCG sampler:
- Sample $\left(\Omega_{m}, \Omega_{\Lambda}\right)$ and (α, β) without conditioning on (X, b).
- Updates of both $\left(\Omega_{m}, \Omega_{\Lambda}\right)$ and (α, β) need MH.
- ASIS sampler: $Y_{\text {mis }, S}$ for $\left(\Omega_{m}, \Omega_{\Lambda}\right)$ and $(\alpha, \beta): A X+L$; $Y_{\text {mis }, A}$ for $\left(\Omega_{m}, \Omega_{\Lambda}\right)$ and $(\alpha, \beta): X$.
- MH within PCG+ASIS sampler:
- Given (α, β), sample $\left(\Omega_{m}, \Omega_{\Lambda}\right)$ with MH within PCG;
- Given $\left(\Omega_{m}, \Omega_{\Lambda}\right)$, sample (α, β) with ASIS.

For each sampler, run 11,000 iterations with a burn-in of 1,000.
Imperial College London

Convergence Results of Gibbs and PCG

MH within Gibb

MH within PCG

Convergence Results of ASIS and Combining

ASIS

PCG within ASIS

$21 / 41$

Effective Sample Size (ESS) per Second

The larger the ESS/sec, the more efficient the algorithm.

Gibbs PCG ASIS PCG+ASIS

Ω_{m}	0.00166	0.0302	0.0103	0.0392
Ω_{Λ}	0.000997	0.0232	0.00571	0.0282
α	0.00712	0.0556	0.0787	0.0826
β	0.00874	0.0264	0.0830	0.0733

Factor Analysis Model

- Model

$$
Y_{i} \sim \mathrm{~N}\left[Z_{i} \beta, \Sigma=\operatorname{Diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{p}^{2}\right)\right], \text { for } i=1, \ldots, n
$$

- Y_{i} - $(1 \times p)$ vector of the i th observation;
$Z_{i}-(1 \times q)$ vector of factors; $Z_{i} \mid \beta \sim \mathrm{N}(0, l) ; q<p$.
- β and Σ —unknown parameters.

Priors: $p(\beta) \propto 1 ; \sigma_{j}^{2} \sim \operatorname{Inv-Gamma}(0.01,0.01), j=1, \ldots, p$.

- Simulation Study
- Set $p=6, q=2$, and $n=100$.
- $\sigma_{j}^{2} \sim$ Inv-Gamma($\left.1,0.5\right),(j=1, \ldots, 6)$;
$\beta_{h j} \sim \mathrm{~N}\left(0,3^{2}\right),(h=1,2 ; j=1, \ldots, 6)$.

Algorithms for Factor Analysis

- Standard Gibbs sampler:

$$
\left[Z \mid \beta^{\prime}, \Sigma^{\prime}\right] \longrightarrow\left[\sigma_{j}^{2} \mid Z, \beta^{\prime}, \sigma_{-j}^{2}\right]_{j=1}^{p} \longrightarrow[\beta \mid Z, \Sigma]
$$

- MH within PCG sampler: sampling $\sigma_{1}^{2}, \sigma_{3}^{2}$ and σ_{4}^{2} without conditioning on Z. This should be facilitated by MH .
- ASIS sampler: $Y_{\text {mis }, A}$ for $\beta: Z_{i}$;

$$
Y_{\text {mis }, S} \text { for } \beta: W_{i}=Z_{i} \beta
$$

- MH within PCG+ASIS sampler:
- Given β, update Σ with MH within PCG;
- Given Σ, update β with ASIS.

For each sampler, run 11,000 iterations with a burn-in of $1, \mathrm{Q}_{\substack{\text { (th) rial } \\ \text { London }}}$

Convergence Results of Factor Analysis Model

Effective Sample Size (ESS) per Second

The larger the ESS/sec, the more efficient the algorithm.

Gibbs PCG ASIS PCG + ASIS

$\log \left(\sigma_{1}^{2}\right)$
0.18
2.17
0.15
1.91
$\begin{array}{lllll}\beta_{13} & 0.0087 & 0.0090 & 17.54 & 15.37\end{array}$

Imperial College

Outline

(1) Algorithm Review

(2) Combining Strategies
(3) Surrogate Distribution

4 Extensions on Cosmological Model
(5) Conclusion

Imperial College London

Bivariate Surrogate Distribution

Target distribution: $\boldsymbol{p}\left(\psi_{1}, \psi_{2}\right)$.
Surrogate distribution: $\pi\left(\psi_{1}, \psi_{2}\right)$.
$\pi\left(\psi_{1}\right)=p\left(\psi_{1}\right), \pi\left(\psi_{2}\right)=p\left(\psi_{2}\right)$; The correlation between ψ_{1} and ψ_{2} is lower for π than for p.

Sampler S. 1

$$
\begin{aligned}
& p\left(\dot{\psi}_{1} \mid \psi_{2}^{\prime}\right) \\
& p\left(\psi_{2} \mid \psi_{1}\right)
\end{aligned}
$$

Sampler S. 2

$$
\begin{aligned}
& \pi\left(\psi_{1} \mid \psi_{2}^{\prime}\right) \\
& p\left(\psi_{2} \mid \psi_{1}\right)
\end{aligned}
$$

Sampler S. 3

$$
\begin{aligned}
& \pi\left(\psi_{1} \mid \psi_{2}^{\prime}\right) \\
& \pi\left(\psi_{2} \mid \psi_{1}\right)
\end{aligned}
$$

- Stationary distribution of Samplers S. 1 and S.2: $\boldsymbol{p}\left(\psi_{1}, \psi_{2}\right)$. Stationary distribution of Sampler S.3: $\pi\left(\psi_{1}, \psi_{2}\right)$.
- Condition for Sampler S. 2 maintaining the target: $\pi\left(\psi_{1}\right)=p\left(\psi_{1}\right), \pi\left(\psi_{2}\right)=p\left(\psi_{2}\right)$; Step order is fixed.

Comparison of Samplers S.1-S. 3

Example.

$p\left(\psi_{1}, \psi_{2}\right): \mathrm{N}\left[\binom{0}{0},\left(\begin{array}{cc}1 & 0.99 \\ 0.99 & 1\end{array}\right)\right] ; \pi\left(\psi_{1}, \psi_{2}\right): \mathrm{N}\left[\binom{0}{0},\left(\begin{array}{cc}1 & \rho_{\pi} \\ \rho_{\pi} & 1\end{array}\right)\right]$.

Imperial College London

Ways to Derive Surrogate Distributions

- ASIS: $\left[Y_{\text {mis }, S} \mid \theta^{\prime}\right] \rightarrow\left[Y_{\text {mis }, A} \mid Y_{\text {mis }, S}\right] \rightarrow\left[\theta \mid Y_{\text {mis }, A}\right]$. $\pi\left(\theta \mid Y_{\text {mis }, S}\right)=\int p\left(Y_{\text {mis }, A} \mid Y_{\text {mis }, S}\right) p\left(\theta \mid Y_{\text {mis }, A}\right) \mathrm{d} Y_{\text {mis }, A} ;$ $\pi\left(\theta, Y_{\text {mis }, S}\right)=\pi\left(\theta \mid Y_{\text {mis }, S}\right) p\left(Y_{\text {mis }, S}\right)$.
- PCG: intermediate stationary distributions.

PCG II: $\left[\psi_{1} \mid \psi_{2}^{\prime}, \psi_{4}^{\prime}\right] \rightarrow\left[\psi_{2}, \psi_{3} \mid \psi_{1}, \psi_{4}^{\prime}\right] \rightarrow\left[\psi_{4} \mid \psi_{1}, \psi_{2}, \psi_{3}\right]$. Intermediate stationary ending with Step 1: $\pi\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right)=p\left(\psi_{2}, \psi_{3}, \psi_{4}\right) p\left(\psi_{1} \mid \psi_{2}, \psi_{4}\right)$.

- MDA: $\left[\alpha^{\star}, \tilde{Y}_{\text {mis }} \mid \theta^{\prime}\right] \longrightarrow\left[\alpha, \theta \mid \tilde{Y}_{\text {mis }}\right]$.
$p\left(\theta \mid \tilde{Y}_{\text {mis }}\right)=\int p\left(\alpha, \theta \mid \tilde{Y}_{\text {mis }}\right) \mathrm{d} \alpha \xlongequal{\text { Set } \tilde{Y}_{\text {mis }} \text { as } Y_{\text {mis }}} \pi\left(\theta \mid Y_{\text {mis }}\right) ;$ $\pi\left(\theta, Y_{\text {mis }}\right)=\pi\left(\theta \mid Y_{\text {mis }}\right) p\left(Y_{\text {mis }}\right)$.

Advantages of Surrogate Distribution

- Surrogate distribution unifies different strategies under a common framework.
- For ASIS, a sampler involving surrogate distribution, but equivalent to the original ASIS sampler, has fewer steps.
- If we are only interested in marginal distributions, surrogate distribution strategy is promising to produce more efficient algorithms.

Outline

(1) Algorithm Review

(2) Combining Strategies
(3) Surrogate Distribution
4. Extensions on Cosmological Model
(5) Conclusion

Model Review and New Data

Recall:

- Level 1: Errors-in-variables regression:

$$
\begin{gathered}
m_{B i}=\mu_{i}+M_{i}^{\epsilon}-\alpha x_{i}+\beta c_{i} ; \\
\left(\begin{array}{c}
\hat{c}_{i} \\
\hat{x}_{i} \\
\hat{m}_{B i}
\end{array}\right) \sim \mathrm{N}\left[\left(\begin{array}{c}
c_{i} \\
x_{i} \\
m_{B i}
\end{array}\right), \hat{C}_{i}\right], i=1, \ldots, n .
\end{gathered}
$$

- Level 2:

$$
M_{i}^{\epsilon} \sim \mathrm{N}\left(M_{0}, \sigma_{\epsilon}^{2}\right) ; x_{i} \sim \mathrm{~N}\left(x_{0}, R_{x}^{2}\right) ; c_{i} \sim \mathrm{~N}\left(c_{0}, R_{c}^{2}\right)
$$

σ_{ϵ} small \Longrightarrow "Standardizable candle"

Data: A "JLA" sample of 740 SNla in Betoule, et al. (2014).

Shrinkage Estimation

Low mean squared error estimates of M_{i}^{ϵ}

Shrinkage Error

Reduced standard deviations

Systematic Errors

- Systematic errors: seven sources of uncertainties.
- Blocks: different surveys.

Effect on cosmological parameters:

$$
\hat{C}_{\text {stat }} \text { vs } \hat{C}_{\text {stat }}+\hat{C}_{\text {sys }} .
$$

Adjusting for Galaxy Mass: Method I

Method I: Divide M_{i}^{ϵ} by $w_{i}=\log _{10}\left(M_{\text {galaxy }} / M_{\odot}\right)$;

$$
\left\{\begin{array}{l}
M_{i}^{\epsilon} \sim \mathrm{N}\left(M_{01}, \sigma_{\epsilon 1}^{2}\right), \text { if } w_{i}<10 \\
M_{i}^{\epsilon} \sim \mathrm{N}\left(M_{02}, \sigma_{\epsilon 2}^{2}\right), \text { if } w_{i}>10 .
\end{array}\right.
$$

37/41

Adjusting for Galaxy Mass: Method II

Much scatter in both M_{i} and w_{i}.
Treat w_{i} as covariate like x_{i} and c_{i},

$$
\begin{aligned}
& \hat{w}_{i} \sim \mathrm{~N}\left(w_{i}, \hat{\sigma}_{w}^{2}\right): \\
& m_{B i}=\mu_{i}+M_{i}^{\epsilon}-\alpha x_{i}+\beta c_{i}+\gamma w_{i} .
\end{aligned}
$$

Imperial College London

Model Checking

Model setting:

Cubic Spline Curve Fitting (K=4)

Imperial College London

Outline

(1) Algorithm Review

(2) Combining Strategies
(3) Surrogate Distribution

4 Extensions on Cosmological Model
(5) Conclusion

Imperial College
London

Conclusion

- Summary
- Combining strategy and surrogate distribution samplers are useful to produce more efficiency in convergence.
- The hierarchical Gaussian model reflects the underlying physical understanding of supernova cosmology.
- Future Work
- More numerical examples to illustrate the algorithms.
- Complete the theory of surrogate distribution strategy.
- Embed this hierarchical model into a model for the full time-series of the supernova explosion, using Gaussian process to impute apparent magnitudes over time.

[^0]: ${ }^{2}$ Meng, X.-L. and van Dyk, D. A. (1999); Liu, J. S. and Wu, Y. N. (1999) ${ }^{\text {nddon }}$

[^1]: ${ }^{4}$ van Dyk, D. A. and Park, T. (2008)

[^2]: ${ }^{5}$ Gilks et al. (1995)
 ${ }^{6}$ van Dyk, D. A. and Jiao, X. (2015)

