Embedding Supernova Cosmology into a Bayesian Hierarchical Model

Xiyun Jiao

Statistic Section Department of Mathematics Imperial College London

Joint work with David van Dyk, Roberto Trotta & Hikmatali Shariff

ICHASC Talk Jan 27, 2015

Outline

- 2 Combining Strategies
- 3 Surrogate Distribution
- 4 Extensions on Cosmological Model

5 Conclusion

Problem Setting

- Goal: Sample from posterior distribution $p(\psi|Y)$ using Gibbs-type samplers.
- Special case: Data Augmentation (DA) Algorithm¹ $\psi = (\theta, Y_{mis})$. DA algorithm proceeds as:

 $[\mathbf{Y}_{\mathrm{mis}}|\theta'] \longrightarrow [\theta|\mathbf{Y}_{\mathrm{mis}}].$

Stationary distribution: $p(Y_{mis}, \theta | Y)$.

DA algorithm and Gibbs samplers are easy to implement, but... Converge slowly!

> Imperial College London

¹Tanner, M. A. and Wong, W. H. (1987)

Problem Setting

- Goal: Sample from posterior distribution *p*(ψ|Y) using Gibbs-type samplers.
- Special case: Data Augmentation (DA) Algorithm¹ $\psi = (\theta, Y_{mis})$. DA algorithm proceeds as:

 $[\mathbf{Y}_{\mathrm{mis}}|\theta'] \longrightarrow [\theta|\mathbf{Y}_{\mathrm{mis}}].$

Stationary distribution: $p(Y_{mis}, \theta | Y)$.

DA algorithm and Gibbs samplers are easy to implement, but... Converge slowly!

> Imperial College London

¹Tanner, M. A. and Wong, W. H. (1987)

Algorithm Review

5/41

Marginal Data Augmentation

Marginal Data Augmentation (MDA)²

MDA introduces a working parameter α into p(Y, Y_{mis}|θ) via Y_{mis} [e.g., Ỹ_{mis} = F_α(Y_{mis})], s.t.,

$$\int {oldsymbol{
ho}}(ilde{Y}_{
m mis}, {oldsymbol{Y}}| heta, lpha) {
m d}\, ilde{Y}_{
m mis} = {oldsymbol{
ho}}({oldsymbol{Y}}| heta).$$

• If the prior distribution of α is proper, MDA proceeds as:

$$[\alpha^{\star}, \, \tilde{Y}_{\rm mis} | \theta'] \longrightarrow [\alpha, \theta | \, \tilde{Y}_{\rm mis}].$$

Imperial College

 MDA improves convergence by increasing variability in augmented data and reducing augmented information.

²Meng, X.-L. and van Dyk, D. A. (1999); Liu, J. S. and Wu, Y. N. (1999)

Ancillarity-Sufficiency Interweaving Strategy

Ancillarity-Sufficiency Interweaving Strategy (ASIS)³

- ASIS considers a pair of special DA schemes:
 - Sufficient augmentation $Y_{\text{mis},S}$: $p(Y|Y_{\text{mis},S},\theta)$ is free of θ .
 - Ancillary augmentation $Y_{\text{mis},A}$: $p(Y_{\text{mis},A}|\theta)$ is free of θ .

• Given
$$\theta$$
, $Y_{\text{mis},A} = \mathcal{F}_{\theta}(Y_{\text{mis},S})$. ASIS proceeds as

Interweave $[\theta|Y_{\mathrm{mis},\mathcal{S}}]$ into DA algorithm w.r.t. $Y_{\mathrm{mis},\mathcal{A}}$

• ASIS obtains more efficiency by taking advantage of the "beauty-and-beast" feature of two parent DA algorithms.

Imperial College London

³Yu, Y. and Meng, X.-L. (2011)

Understanding ASIS

• Model:

$$\begin{aligned} &Y|(Y_{\mathrm{mis}},\theta) \sim \mathrm{N}(Y_{\mathrm{mis}},1), \ Y_{\mathrm{mis}}|\theta \sim \mathrm{N}(\theta,V), \ p(\theta) \propto 1. \\ \bullet \ \mathsf{ASIS:} \ Y_{\mathrm{mis},\mathcal{S}} = Y_{\mathrm{mis}}, \ Y_{\mathrm{mis},\mathcal{A}} = Y_{\mathrm{mis}} - \theta. \\ &[Y_{\mathrm{mis},\mathcal{S}}|\theta'] \rightarrow [\theta^{\star}|Y_{\mathrm{mis},\mathcal{S}}] \rightarrow [Y_{\mathrm{mis},\mathcal{A}}|Y_{\mathrm{mis},\mathcal{S}},\theta^{\star}] \rightarrow [\theta|Y_{\mathrm{mis},\mathcal{A}}|Y_{\mathrm{mis},\mathcal{S}},\theta^{\star}] \\ \end{aligned}$$

More directions: efficient and easy to implement.

Partially Collapsed Gibbs Sampling

Partially Collapsed Gibbs (PCG)⁴

- Model Reduction: PCG reduces conditioning of Gibbs. It replaces some conditional distributions of a Gibbs sampler with conditionals of marginal distributions of the target.
- PCG improves convergence by increasing variance and jump size of conditional distributions.
- Three stages: *Marginalization*, *permutation*, *trimming*.
 - Tools to transform a Gibbs sampler into a PCG one.
 - Maintain the target stationary distribution.

⁴van Dyk, D. A. and Park, T. (2008)

Imperial College

Examples of PCG Sampling

Example. $\psi = (\psi_1, \psi_2, \psi_3, \psi_4)$; Sample from $p(\psi|Y)$.

- Special cases: blocked and collapsed Gibbs, e.g., PCG I.
- More interestingly, a PCG sampler consists of *incompatible* conditional distributions, e.g., PCG II. Modifying the order of steps of PCG II may alter its stationary distribution.

Three Stages to Derive a PCG Sampler

"*"—Intermediate Draws

Outline

Algorithm Review

- 2 Combining Strategies
- 3 Surrogate Distribution
- 4 Extensions on Cosmological Model

5 Conclusion

Combining Different Strategies into One Sampler

Cannot Sample Conditionals?

- Embed Metropolis-Hastings (MH) into Gibbs⁵—standard.
- Embed MH into PCG⁶—subtle implementation!

Further Improvement in Convergence

- Several parameters converge slowly—a strategy is efficient for one parameter, but has little effect on others; Another strategy has opposite effect. By combining, we improve all.
- One strategy alone is useful for all parameters—prefer to use a combination, as long as gained efficiency exceeds extra computational expense.

⁵Gilks et al. (1995)

⁶van Dyk, D. A. and Jiao, X. (2015)

Background

- Physics Nobel Prize (2011): discovery of acceleration of expansion of the universe.
- The acceleration is attributed to existence of dark energy.
- Type Ia supernova (SNIa) observations: critical to quantify characteristics of dark energy.

Mass > "Chandrasekhar threshold" (1.44 M_{\odot}) \implies SN explosion.

Image credit: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/snovcn.html

"Standardizable Candles"

Common history \implies similar absolute magnitudes for SNIa, i.e.,

$$M_i \sim N(M_0, \sigma_{
m int}^2)$$

 \implies SNIa are "standardizable candles".

Phillips corrections:

$$M_i = M_i^{\epsilon} - \alpha x_i + \beta c_i, \ M_i^{\epsilon} \sim N(M_0, \sigma_{\epsilon}^2);$$

 x_i —stretch correction, c_i —color correction,

$$\sigma_{\epsilon}^2 \le \sigma_{\rm int}^2$$

Distance Modulus

Apparent Magnitude – Absolute Magnitude = Distance Modulus:

$$m_B - M = \mu = 5\log_{10}[\text{distance}(\text{Mpc})] + 25.$$

- Nearby SN: distance $= zc/H_0$;
- Distant SN: $\mu = \mu(z, \Omega_m, \Omega_\Lambda, H_0)$;
 - c—speed of light
 - H₀—Hubble constant
 - z—redshift
 - Ω_m—total matter density
 - Ω_Λ—dark energy density

Bayesian Hierarchical Model⁷

• Level 1: Errors-in-variables regression:

$$m_{Bi} = \mu_i + M_i^{\epsilon} - \alpha x_i + \beta c_i;$$

$$\begin{pmatrix} \hat{c}_i \\ \hat{x}_i \\ \hat{m}_{Bi} \end{pmatrix} \sim \mathrm{N} \begin{bmatrix} \begin{pmatrix} c_i \\ x_i \\ m_{Bi} \end{bmatrix}, \hat{c}_i \end{bmatrix}, i = 1, \dots, n.$$

• Level 2:

$$M_i^{\epsilon} \sim \mathrm{N}(M_0, \sigma_{\epsilon}^2); \; x_i \sim \mathrm{N}(x_0, R_x^2); \; c_i \sim \mathrm{N}(c_0, R_c^2).$$

• Priors:

Gaussian for M_0 , x_0 , c_0 ; Uniform for Ω_m , Ω_Λ , α , β , $\log(R_x)$, $\log(R_c)$, $\log(\sigma_\epsilon)$. z and H_0 fixed.

> Imperial College London

⁷March et al. (2011)

Notation and Data

Notation

•
$$X_{(3n \times 1)}$$
— $(c_1, x_1, M_1^{\epsilon}, \dots, c_n, x_n, M_n^{\epsilon});$
• $b_{(3 \times 1)}$ — $(c_0, x_0, M_0);$
• $L_{(3n \times 1)}$ — $(0, 0, \mu_1, \dots, 0, 0, \mu_n);$
• $T_{(3 \times 3)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \beta & -\alpha & 1 \end{bmatrix}, \text{ and } A_{(3n \times 3n)} = \text{Diag}(T, \dots, T).$

Data: A sample of 288 SNIa compiled by Kessler et al. (2009).

Algorithms for Cosmological Herarchical Model

- MH within Gibbs sampler: Update of $(\Omega_m, \Omega_\Lambda)$ needs MH.
- MH within PCG sampler:
 - Sample $(\Omega_m, \Omega_\Lambda)$ and (α, β) without conditioning on (X, b).
 - Updates of both $(\Omega_m, \Omega_\Lambda)$ and (α, β) need MH.
- ASIS sampler: $Y_{\text{mis},S}$ for $(\Omega_m, \Omega_\Lambda)$ and (α, β) : AX + L; $Y_{\text{mis},A}$ for $(\Omega_m, \Omega_\Lambda)$ and (α, β) : X.
- MH within PCG+ASIS sampler:
 - Given (α, β) , sample $(\Omega_m, \Omega_\Lambda)$ with MH within PCG;
 - Given $(\Omega_m, \Omega_\Lambda)$, sample (α, β) with ASIS.

For each sampler, run 11,000 iterations with a burn-in of 1,000.

Convergence Results of Gibbs and PCG

MH within Gibb MH within PCG ď 0.0 ٥ 2000 4000 8000 10000 Iteration Lao Iteration Lao ď 0.4 ö ö մնոսու 0.0 0 0 2000 4000 6000 8000 0 10000 2000 4000 6000 8000 10000 Iteration Lag Iteration Lag 0.18 ò 8 ₽ γç 0.06 0.06 0 2000 4000 8000 2000 10000 10 20 30 10000 4000 8000 Lag Iteration Lag Iteration <u>م</u> 2.6 4 ö 2.2 Imperial College Landon 0 2000 8000 10000 2000 8000 10000 Iteration Lag Iteration Lag 20/41

Convergence Results of ASIS and Combining

21/41

Effective Sample Size (ESS) per Second

The larger the ESS/sec, the more efficient the algorithm.

	Gibbs	PCG	ASIS	PCG+ASIS
Ω _m	0.00166	0.0302	0.0103	0.0392
Ω_{Λ}	0.000997	0.0232	0.00571	0.0282
α	0.00712	0.0556	0.0787	0.0826
β	0.00874	0.0264	0.0830	0.0733

Factor Analysis Model

Model

$$Y_i \sim \mathbb{N}\left[Z_i\beta, \Sigma = \text{Diag}(\sigma_1^2, \ldots, \sigma_p^2)\right], \text{ for } i = 1, \ldots, n.$$

- *Y_i* —(1 × *p*) vector of the *i*th observation;
 Z_i —(1 × *q*) vector of factors; *Z_i*|*β*∼N(0, *I*); *q* < *p*.
- β and Σ —unknown parameters. Priors: $p(\beta) \propto 1$; $\sigma_j^2 \sim$ Inv-Gamma(0.01, 0.01), j = 1, ..., p.

Simulation Study

• Set *p* = 6, *q* = 2, and *n* = 100.

•
$$\sigma_j^2 \sim \text{Inv-Gamma}(1, 0.5), (j = 1, ..., 6);$$

 $\beta_{hj} \sim N(0, 3^2), (h = 1, 2; j = 1, ..., 6).$

Algorithms for Factor Analysis

Standard Gibbs sampler:

$$\left[Z|\beta',\Sigma'\right]\longrightarrow \left[\sigma_{j}^{2}|Z,\beta',\sigma_{-j}^{2'}\right]_{j=1}^{p}\longrightarrow [\beta|Z,\Sigma].$$

- **MH within PCG sampler**: sampling σ_1^2 , σ_3^2 and σ_4^2 without conditioning on *Z*. This should be facilitated by MH.
- ASIS sampler: $Y_{\text{mis},A}$ for β : Z_i ; $Y_{\text{mis},S}$ for β : $W_i = Z_i\beta$.
- MH within PCG+ASIS sampler:
 - Given β , update Σ with MH within PCG;
 - Given Σ , update β with ASIS.

For each sampler, run 11,000 iterations with a burn-in of 1,000 rial College

London

Convergence Results of Factor Analysis Model

25/41

Effective Sample Size (ESS) per Second

The larger the ESS/sec, the more efficient the algorithm.

	Gibbs	PCG	ASIS	PCG + ASIS
$\log(\sigma_1^2)$	0.18	2.17	0.15	1.91
eta_{13}	0.0087	0.0090	17.54	15.37

Outline

1 Algorithm Review

- 2 Combining Strategies
- 3 Surrogate Distribution
 - 4 Extensions on Cosmological Model

5 Conclusion

Bivariate Surrogate Distribution

Target distribution: $p(\psi_1, \psi_2)$.

Surrogate distribution: $\pi(\psi_1, \psi_2)$.

 $\pi(\psi_1) = p(\psi_1), \pi(\psi_2) = p(\psi_2)$; The correlation between ψ_1 and ψ_2 is lower for π than for p.

- Stationary distribution of Samplers S.1 and S.2: $p(\psi_1, \psi_2)$. Stationary distribution of Sampler S.3: $\pi(\psi_1, \psi_2)$.
- Condition for Sampler S.2 maintaining the target: $\pi(\psi_1) = p(\psi_1), \pi(\psi_2) = p(\psi_2)$; Step order is fixed.

Comparison of Samplers S.1–S.3

Example.

$$\boldsymbol{p}(\psi_1,\psi_2): \mathrm{N}\left[\left(\begin{array}{c} 0\\ 0 \end{array} \right), \left(\begin{array}{c} 1 & 0.99\\ 0.99 & 1 \end{array} \right) \right]; \boldsymbol{\pi}(\psi_1,\psi_2): \mathrm{N}\left[\left(\begin{array}{c} 0\\ 0 \end{array} \right), \left(\begin{array}{c} 1 & \rho_{\pi}\\ \rho_{\pi} & 1 \end{array} \right) \right].$$

Ways to Derive Surrogate Distributions

• ASIS:
$$[Y_{\text{mis},S}|\theta'] \rightarrow [Y_{\text{mis},A}|Y_{\text{mis},S}] \rightarrow [\theta|Y_{\text{mis},A}].$$

 $\pi(\theta|Y_{\text{mis},S}) = \int p(Y_{\text{mis},A}|Y_{\text{mis},S})p(\theta|Y_{\text{mis},A})dY_{\text{mis},A};$
 $\pi(\theta, Y_{\text{mis},S}) = \pi(\theta|Y_{\text{mis},S})p(Y_{\text{mis},S}).$

• **PCG**: *intermediate stationary distributions*. PCG II: $[\psi_1|\psi'_2, \psi'_4] \rightarrow [\psi_2, \psi_3|\psi_1, \psi'_4] \rightarrow [\psi_4|\psi_1, \psi_2, \psi_3]$. Intermediate stationary ending with Step 1: $\pi(\psi_1, \psi_2, \psi_3, \psi_4) = p(\psi_2, \psi_3, \psi_4)p(\psi_1|\psi_2, \psi_4)$.

• MDA:
$$[\alpha^{\star}, \tilde{Y}_{\text{mis}} | \theta'] \longrightarrow [\alpha, \theta | \tilde{Y}_{\text{mis}}].$$

 $p(\theta | \tilde{Y}_{\text{mis}}) = \int p(\alpha, \theta | \tilde{Y}_{\text{mis}}) d\alpha \xrightarrow{\text{Set } \tilde{Y}_{\text{mis}} \text{ as } Y_{\text{mis}}}{\pi(\theta, Y_{\text{mis}}) = \pi(\theta | Y_{\text{mis}}) p(Y_{\text{mis}}).} \pi(\theta | Y_{\text{mis}});$

Advantages of Surrogate Distribution

- Surrogate distribution unifies different strategies under a common framework
- For ASIS, a sampler involving surrogate distribution, but equivalent to the original ASIS sampler, has fewer steps.
- If we are only interested in marginal distributions, surrogate distribution strategy is promising to produce more efficient algorithms.

Outline

Algorithm Review

- 2 Combining Strategies
- 3 Surrogate Distribution
- Extensions on Cosmological Model

Conclusion

Model Review and New Data

~

Recall:

• Level 1: Errors-in-variables regression:

$$m_{Bi} = \mu_i + M_i^{\epsilon} - \alpha x_i + \beta c_i;$$

$$\begin{pmatrix} \hat{c}_i \\ \hat{x}_i \\ \hat{m}_{Bi} \end{pmatrix} \sim \mathbb{N} \begin{bmatrix} \begin{pmatrix} c_i \\ x_i \\ m_{Bi} \end{pmatrix}, \hat{c}_i \end{bmatrix}, i = 1, \dots, n.$$

• Level 2:

$$M_i^{\epsilon} \sim \mathrm{N}(M_0, \sigma_{\epsilon}^2); \; x_i \sim \mathrm{N}(x_0, R_x^2); \; c_i \sim \mathrm{N}(c_0, R_c^2).$$

 $\sigma_{\epsilon} \text{ small} \Longrightarrow$ "Standardizable candle"

Data: A "JLA" sample of 740 SNIa in Betoule, et al. (2014).

Shrinkage Estimation

Low mean squared error estimates of M_i^{ϵ}

Shrinkage Error

Reduced standard deviations

Systematic Errors

- Systematic errors: seven sources of uncertainties.
- Blocks: different surveys.

Effect on cosmological parameters:

$$\hat{C}_{\mathrm{stat}}$$
 vs $\hat{C}_{\mathrm{stat}} + \hat{C}_{\mathrm{sys}}.$

je

Adjusting for Galaxy Mass: Method I

Method I: Divide M_i^{ϵ} by $w_i = \log_{10}(M_{\text{galaxy}}/M_{\odot})$;

$$\{ \begin{array}{l} M_i^{\epsilon} \sim \mathrm{N}(M_{01}, \sigma_{\epsilon 1}^2), \text{ if } w_i < 10, \\ M_i^{\epsilon} \sim \mathrm{N}(M_{02}, \sigma_{\epsilon 2}^2), \text{ if } w_i > 10. \end{array}$$

Adjusting for Galaxy Mass: Method II

Much scatter in both M_i and w_i .

Treat w_i as covariate like x_i and c_i , $\hat{w}_i \sim N(w_i, \hat{\sigma}_w^2)$: $m_{Bi} = \mu_i + M_i^{\epsilon} - \alpha x_i + \beta c_i + \gamma w_i$.

Model Checking

Model setting:

- Fix $(\Omega_m, \Omega_\Lambda)$;
- $m_{Bi} = \tilde{\mu}_i + M_i^{\epsilon} \alpha x_i + \beta c_i;$
- $\tilde{\mu}_i = \mu(z_i, \Omega_m, \Omega_\Lambda, H_0) + t(z_i),$ $t(z_i)$ —cubic spline

Results:

- Red line—posterior mean;
- Gray band—95% region;
- Black dots—

 $(\hat{m}_{Bi} - M_0 + \alpha \hat{x}_i - \beta \hat{c}_i) - \tilde{\mu}_i.$

Cubic Spline Curve Fitting (K=4)

Outline

Algorithm Review

- 2 Combining Strategies
- 3 Surrogate Distribution
- 4 Extensions on Cosmological Model

5 Conclusion

Conclusion

Summary

- Combining strategy and surrogate distribution samplers are useful to produce more efficiency in convergence.
- The hierarchical Gaussian model reflects the underlying physical understanding of supernova cosmology.

Future Work

- More numerical examples to illustrate the algorithms.
- Complete the theory of surrogate distribution strategy.
- Embed this hierarchical model into a model for the full time-series of the supernova explosion, using Gaussian process to impute apparent magnitudes over time.