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Introduction

Light travels via different paths due to the gravitational fields of
intervening matter

I Several paths cause multiple images of the same source.

I Different path lengths cause different arrival times.



Introduction

Two light curves for a simulated double lensed quasar from the Time
Delay Challenge (TDC) design paper (Dobler et al. 2013)

I Blue light curve lags behind the orange light curve as a result of the
gravitational time delay



Time Delay Challenge
Accurate time delay estimate is important in

I measuring cosmological parameters, e.g., Hubble constant, H0

I probing the dark matter (sub-)structure within the lens galaxy

Evil team gave a simulated data set (TDC0) to Good team.

I TDC0, called a ladder, consists of 7 rungs (increasing difficulty).

I Each rung (subscript j) has 8 data sets (subscript i).

I Each data set contains a pair of light curves with measurement
errors.

I Good team’s job is to estimate the time delays in each dataset, ∆̂ij ,
where i = 1, 2, . . . , 8 and j = 1, 2, . . . , 7.



Data Description

5 variables in each dataset

I time: observation (arrival) time in days

I lcA: Intensity of the leading light curve A (red curve below) in
nanomaggies

I se.lcA: measurement error of the leading light curve A

I lcB: Intensity of the following light curve B (blue curve below) in
nanomaggies

I se.lcB: measurement error of the following light curve B



Complexities and Challenges

I Rung1 → Rung2: Seasonal gaps

I Rung2 → Rung3: More variations in the following blue light curve

I Rung1 → Rung4: Sparse (irregular) observations (sampling time)

I Rung4 → Rung5: Seasonal gaps

I Rung5 → Rung6: Non-interger time (sampling time on real line)

I Rung6 → Rung7: More variations in the following blue light curve



Popular Estimation Methods

I Smoothing and χ2-minimization (Fassnacht, 1999)

I Smooth both light curves

I Scale (by σ) and shift (by ∆) one smooth light curve

I Calculate χ2
σ,∆ statistic

I Find ∆ minimizing χ2
σ,∆ on the two-dimensional grids of σ and ∆

I Smoothing and Cross-correlation (Fassnacht, 1999)

I Smooth both light curves

I Shift (by ∆) one smooth light curve

I Calculate r∆, sample cross-correlation functions

I Find ∆ that maximizes r∆ on the grid of ∆



Popular Estimation Methods

I Dispersion method (Pelt et al. 1994)

I Does not smooth the curves at all.

I Introduce the composite curve merging two light curves, X (t) and
Y (t + ∆) + c.

I Calculate the dispersion (D2
c,∆), defined as the weighted sum of

squared differences of two adjoining points of the composite curve.

I Find ∆ minimizing D2
c,∆ on the two-dimensional grids of c and ∆.

I Gaussian process (GP) (Tewes et al. 2013, Hojjati et al. 2013)

I Fit the GPs on X (t) and Y (t) (GP1 and GP2 each), estimating the
mean functions given certain covariance kernels.

I Find ∆ that minimizes the weighted average variation of difference
curve, GP1(t)− GP2(t + ∆), on grid of ∆.



Idea and Model Specification

I ∃ only one underlying light curve: one light curve is just a shifted
version of the other in x- and y -axes, i.e. Y (t) = X (t −∆) + c .

I SNoTE:
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I Blue curve lags behind Red one by 2 days, shifted by 1 unit in y -axis

I 3 observations from each curve at t1, t2, and t3

I Time sequence on the Red light curve corresponding to six
observations: (t1 −∆, t1, t2 −∆, t3 −∆, t2, t3)



Idea and Model Specification

I Likelihood:
x(tj) = X (tj) + εj , εj ∼ N(0, δ2

j ),

y(tj) = X (tj −∆) + c + ej , ej ∼ N(0, η2
j ), j = 1, 2, . . . , n

I Prior
I p(X (t),X (t−∆)|θ,∆) = p(X (t′)|θ,∆), where

I t′ ≡ (t′1, t
′
2, . . . , t

′
n) ≡ sort(t1, t2, . . . , tn, t1 −∆, t2 −∆, . . . , tn −∆)

I Hyper-prior

I p(θ,∆, c)



Prior: Ornstein-Uhlenbeck Process

I Need to build a model for underlying (latent) light curve

p(X (t),X (t−∆)|θ,∆) = p(X (t′)|θ,∆)

I Stochastic process in continuous time

I Easy way to sample light curve at irregularly-spaced times

I O-U process, also called CAR(1) or damped random walk process

I dX (t) = − 1
τ

(
X (t)− µ

)
dt + σdB(t), where

I τ is a relaxation time, µ and σ are mean and scale parameters of the
underlying process, and finally B(t) is a standard Brownian motion.

I Solution of stochastic differential equation with Marknovian property
X (tj)|X (tj−1), µ, σ2, τ ∼ N

[
mean: µ+ e−(tj−tj−1)/τ

(
X (tj−1)− µ

)
,

variance: τσ2

2 (1− e−2(tj−tj−1)/τ )
]

I p(X (t′)|θ,∆) = p(X (t ′1)|θ,∆)
∏2n

j=2 p(X (t ′j )|X (t ′j−1), θ,∆)



Hyper-prior Distribution

I 5 hyper-parameters:

I µ is a mean parameter of underlying process

I σ is a scale parameter of underlying process

I τ is a relaxation time of the underlying process

I c is a shift in y -axis

I ∆ is a shift in x-axis (time delay)

I Naively informative: p(θ, c ,∆) ≡ p(µ, σ2, τ, c ,∆) ∝ 1
σ

e−ε1/τ

τε1+1
e−ε2/∆

∆ε2+1

I τ ∼ InvGam(ε1, ε1) and ∆ ∼ InvGam(ε2, ε2)

I In general, a diffuse hyper-prior distribution (possibly Normal) on ∆,
if we do not know which light curve is preceding



Full Posterior Distribution

I Full Posterior: p(X (t),X (t−∆), θ, c ,∆|x(t), y(t))

∝ p(x(t)|X (t))·p(y(t)|X (t−∆)+c , c ,∆) Likelihood

·p(X (t),X (t−∆)|θ,∆) Prior

·p(θ, c ,∆) Hyper-prior

I Kelly et al. (2009) introduces a way to obtain a marginalized
posterior distribution p(θ, c ,∆|x(t), y(t)) with the underlying
process, X (t) and X (t−∆), integrated out.



Conditional Posterior Distributions

I Conditional posterior distributions for Gibbs sampler
I p(c|all) = p(c|X (t−∆),∆, y(t))

I p(X (t),X (t−∆), θ,∆|x(t), y(t), c)

= p(X (t−∆)|X (t), θ,∆, x(t), y(t), c)

·p(∆|X (t), θ, x(t), y(t), c) · p(X (t), θ|x(t), y(t), c)

= p(X (t−∆)|X (t), θ,∆, y(t), c)

·p(∆|θ, x(t), y(t), c) · p(X (t), θ|x(t))

I Obtaining good posterior samples of one light curve, (X (t), θ|x(t)),
is a key to the successful Gibbs sampler.

I Two possible ways to sample (X (t), θ|x(t)) : Kelly et al. or
Metropolis-Hastings in Gibbs sampler



Two Possible Samplers for One Light Curve

I Kelly et al. (2009) introduces p(θ|x(t)) with X (t) integrated out.

I p(x(t)|X (t)) · p(X (t)|θ) · p(θ) ∝ p(X (t), θ|x(t))

= p(X (t)|θ, x(t)) · p(θ|x(t))

I Alternatively we can use Metropolis-Hastings in Gibbs sampler,
iteratively sampling X (t) and θ from p(X (t)|θ, x(t)) and
p(θ|X (t), x(t)) respectively.

I Comparison: 3,000 posterior samples of θ after 3,000 warming-up.

median (µ, σ, τ) sd (µ, σ, τ) accept.rate time (sec)
Kelly et al. (0.158, 0.0052, 358) (0.11, 0.0007, 3246) (0.33, 0.33, 0.35) 47.3

MH in Gibbs (0.154, 0.0057, 290) (0.10, 0.0008, 2271) (NA, NA, 0.34) 20.9



Two Possible Samplers for One Light Curve

Kelly et al. MH in Gibbs



Example 1: Data from Burud et al. (2002)

I 57 observations for each light curve.

I Their time delay estimate is 128± 3(1σ) using χ2 minimization, and
130± 3(1σ) using their iterative version of χ2 minimization.

I The posterior mean (median) of the time delay estimate was
126.8(126.5)± 2.1.



Example 1: Data from Burud et al. (2002)
I 5 chains each of which has 3,000 samples with 3,000 warming-up

I 270 seconds in total.
I Initial values

I ∆: (75, 100, 125, 150, 175)

I µ, σ, τ,X (t),X (t −∆), c : (1, 0.005, 300, x(t), y(t)− 0.7, 0.7)

I τ ∼ InvGam(1, 1) and ∆ ∼ InvGam(1, 1)

I Gelman-Rubin R̂ = (1, 1, 1, 1, 1) for (∆, c , µ, σ, τ)

I Diagnosis plots for (∆, c , µ, σ, τ)



Example 1: Data from Burud et al. (2002)

I For your reference, Burud et al. used ĉ = 0.69 arbitrarily to overlap
red and blue points in their paper.



Example 2: Data from Kochanek et al. (2006)

I 147 observations for each light curve with wide seasonal gap.

I Their time delay estimate is 14.37+0.75
−0.85 using adjusted χ2

minimization.

I The posterior mean (median) of the time delay estimate was
17.47(17.52)± 0.48.



Example 2: Data from Kochanek et al. (2006)
I 5 chains each of which has 3,000 samples with 3,000 warming-up

I 650 seconds in total.
I Initial values

I ∆: (5, 10, 15, 20, 25)

I µ, σ, τ,X (t),X (t −∆), c : (2, 0.01, 100, x(t), y(t)− 0.78, 0.78)

I τ ∼ InvGam(1, 1) and ∆ ∼ InvGam(1, 1)

I Gelman-Rubin R̂ = (1, 1, 1, 1, 1) for (∆, c , µ, σ, τ)

I Diagnosis plots for (∆, c , µ, σ, τ)



Example 2: Data from Kochanek et al. (2006)

I For your reference, Kochanek et al. did not provide information on
ĉ , though they shifted it in their paper. So I arbitrarily shifted blue
dots by 0.76 in y -axis on the right plot.



Discussion

I Prior choice for ∆

I Sensitivity analysis for τ ∼ InvGam(1, 1) and ∆ ∼ InvGam(1, 1)

I Participation in Time Delay Challenge, an on-going blind
competition
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