MODELING X-RAY SPECTRA OF **ASTROPHYSICAL PLASMAS IMPLICATIONS FOR** STATISTICAL ANALYSIS Randall Smith (CfA) **Collaborators:** N. Brickhouse, A. Foster, H. Yamaguchi (CfA),

J. Wilms (Erlangen), Li Ji (PMO)

"X-ray Line Emission from Capella"

- Mg, Si, S, and Fe are
 <u>unambiguously</u> detected
- Inconsistent with an isothermal corona, and requires components between 6 24 x10⁶ K for an adequate fit.
- Suggests an X-ray emitting plasma confined to magnetically contained loops explains the data.

7 ksec exposure with the Einstein Solid State Spectrometer

"X-ray Line Emission from Capella"

Coronal Structure and Abundances of Capella from EUVE and ASCA Spectroscopy

- Collisional plasma models <u>appear to have flux deficits</u>.
- <u>New atomic models</u> allow reliable determination of elemental abundances.
- EUVE data are not well fitted with only two temperatures.

 Mg, Si, S, and Fe consistent with solar photospheric values, while Ne appears to be underabundant by a factor of ~3 to 4. 21 ksec obs. w/ASCA Silicon Imaging Spectrometer (Brickhouse et al. 2000)

"X-ray Line Emission from Capella"

High-Resolution X-Ray Spectra of Capella: Initial Results from the Chandra High-Energy Transmission Grating Spectrometer

89 ksec w/Chandra HETG (Canizares et al. 2000)

- **Broad range of temperatures**, from log T = 6.3 to 7.2
- The electron density is ~ 10^{10} cm⁻³ at T_e~2 × 10^{6} K.
- The density and emission measure show the <u>coronal loops</u> are significantly smaller than the stellar radius.

What is an AtomDB?

The AtomDB is database of atomic values – wavelengths & rates – useful for calculating emission & absorption in X-ray spectra, especially from astrophysical plasmas.

It's used by X-ray astrophysicists to identify the elements or ions that create features in an observed spectrum, and also to determine the parameters (temperature, density, etc) of the emitting plasma.

The first version of the AtomDB was released in 2001; it is now the standard source in the field.

http://www.atomdb.org

										Energy level 1
Г	170115							E	ectron configuration	
	AIOML)B ATOM	OPHYSICISTS					Ener	gy above ground (eV)	
									Quantum state	n=2, L=0, S=0
Features	Comparisons Physics	- FAQ	Download	Contact Us	Login/Register	_		Ene	ergy level data source	20
								Photo	pionization data source	19
						_				Energy level 2
Get trans	ition information:							E	lectron configuration	
Select an	element:							Ene	rgy above ground (eV)	
H t C	et lons)								Quantum state	n=3, L=1, S=6
								Ene	ergy level data source	20
List lines	in wavelength region:							Phot	oionization data source	
Waveleng	jth: ⊙Å ⊖	keV								
Width:	0.01								Level	27 → 1 Intera
Min. Emis	ssivity: 1.e-18 photos	s cm ³ s ⁻¹						/'	Electron collisi	on rate
Elec. Tem	ip. units: ⊙K ⊖keV								Referenc	е
(Get Lines)									Wavelength (lab/	observed)
List stron	no lines in wavelength reg	ion at a specific	emnerature:						Wavelength (t	heory)
List sti of		ion and specific	emperature.						Transition rate/E	instein A
Waveleng Width:	th: OA OkeV								Transition T	ype [*]
Min. Emis	sivity: 1.e-18 photons cm	n ³ s ⁻¹							Oscillator Streng	th f _{1→27} *
Elec. Tem	ip.: OK OkeV	6 N N							Wavelength (lab/obser	ved) reference
Get Strong Li	nes								Wavelength (theory	reference
									Transition rate re	eference

	Energy level 1								
El	ectron configuration	2p6							
Ene	rgy above ground (eV)	0							
	Quantum state	n=2, L=0, S=0.0	0, degeneracy=1, parity:	=even					
Ene	ergy level data source	2006JPhB3985L							
Photo	pionization data source	199	5A&AS109125V						
		Energy level 27							
E	lectron configuration	2p5 3d1							
Energy above ground (eV)			825.829						
Quantum state n=3, L=1, S=0			.0, degeneracy=3, parity=odd						
Energy level data source 20			06JPhB3985L						
Photoionization data source									
				1					
	Level	27 → 1 Interact	tions						
	Electron collisi	on rate	Nonzero						
	Reference	e	2006JPhB3985L						
	Wavelength (lab/	15.014±0.001Å							
	Wavelength (t	15.0133Å							
	Transition rate/E	instein A	2.46e+13s ⁻¹						
	Transition T	ype [*]	E1						
	Oscillator Streng	2.4938e+0							

Transition rate reference

2006JPhB...39...85L

2006JPhB...39...85L

lon	Wavelength Å	Upper Level	Lower Level	Emissivity ph cm ³ s ⁻¹	Te peak K	Relative Intensity
Fe XIX	14.961	12	1	6.819e-17	1.000e+7	0.03
Fe XIX	14.963	16	4	3.964e-17	1.000e+7	0.02
Fe XX	14.969	49	10	4.275e-18	1.000e+7	0.00
Fe XVIII	14.972	26	1	2.053e-17	7.943e+6	0.01
Fe XX	14.980	29	7	3.143e-18	1.000e+7	0.00
Fe XIX	15.000	26	5	3.323e-18	1.000e+7	0.00
Fe XIX	15.008	15	4	1.697e-17	1.000e+7	0.01
Fe XVII	15.014	27	1	2.228e-15	6.310e+6	1.00
Fe XX	15.047	22	6	1.663e-17	1.000e+7	0.01
Fe XX	15.047	27	7	9.682e-18	1.000e+7	0.00

Using AtomDB database 2.0.2 (Feb 2012)

We even have an iTunes App!

v2.0.2 BUILD 4787 February 23, 2012

HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS

AtomDB: Atomic Data for X-ray Astrophysicists

1 1s ²	0.0000	1	0	0	1	2	
2 1s ¹ 2s ¹	561.24	2	0	1	3	1	
3 1s ¹ 2s ¹	569.68	2	0	0	1	1	10%
4 1s ¹ 2p ¹	568.81	2	1	1	1	1	15%
5 1s ¹ 2p ¹	568.86	2	1	1	3	1	20%
6 1s ¹ 2p ¹	568.95	2	1	1	5	1	25%
7 1s ¹ 2p ¹	574.79	2	1	0	3	1	30%
8 101201	662.45	2	0	1	2		35%
0 15 55	002.45	5	0		3	1	40%
9 1s'3s'	664.63	3	0	0	1	1	45%
10 1s ¹ 3p ¹	664.48	3	1	1	1	1	50%
11 1s ¹ 3p ¹	664.49	3	1	1	3	1	55%
12 1s ¹ 3p ¹	664.52	3	1	1	5	1	60%
13 1s ¹ 3p ¹	666.11	3	1	0	3	1	65%
14 1s ¹ 3d ¹	665.63	3	2	1	3	1	70%
							75%
15 1s ¹ 3d ¹	665.63	3	2	1	5	1	80%
16 1s13d1	665.64	3	2	1	7	1	85%

8	15.9994
C) VII
0	xygen
15	s ² 2s ² 2p ⁴

Level	$\begin{array}{c} 2 \rightarrow 1 \\ \\ 1s^1 2s^1 \rightarrow 1s^2 \end{array}$							
Electron configuration								
Energy above ground	561.24 eV \rightarrow 0.0000 eV							
	n	L	S	degeneracy	parity			
Quantum state	$2 \rightarrow 1$	0	1 ightarrow 0	3 ightarrow 1	even \rightarrow even			
Energy level reference	Whiteford ICFT							
Photoionization reference	1986ADNDT34415C							

Electron collision rate	nonzero	
Collision rate reference	TBD	
Wavelength (theory)	22.0977 Å	
Transition rate/Einstein A	912 s ⁻¹	
Transition type	M1	
Oscillator strength $f_{2\rightarrow 1}$	2.00296×10 ⁻¹⁰	
Wavelength (theory) reference	Whiteford ICFT	
Transition rate reference	Whiteford ICFT	

Radiative transition (1 found):

Wavelength (Å) Wavelength Ref Einstein A (s⁻¹) Einstein A Ref

Electron collision rate	nonzero
Collision rate reference	TBD
Wavelength (theory)	22.0977 Å
Transition rate/Einstein A	912 s ⁻¹
Transition type	M1
Oscillator strength $f_{2\rightarrow 1}$	2.00296×10 ⁻¹⁰
Wavelength (theory) reference	Whiteford ICFT
Transition rate reference	Whiteford ICFT

Radiative transition (1 found):

Wavelength (Å)	Wavelength Ref	Einstein A (s ⁻¹)	Einstein A Ref
22.1 ±0.007	Whiteford ICFT	912	Whiteford ICFT

Temperature vs. emissivity for O VII 2 \rightarrow 1:

AtomDB: Rates, Emissivities, and more

100 strongest lines from a kT=0.3 keV plasma, SPEX vs AtomDB

Wavelength (Å)

100 strongest lines from a kT=2 keV plasma, SPEX vs AtomDB

Wavelength (Å)

TW Hya: Accretion & X-rays

TW Hya: A 10 Myr old "Sun" that is still growing by accreting mass from a disk

Brickhouse et al. 2010

How do stars form?

TW Hya: Accretion & X-rays

Our current best 'picture' of the situation

Accretion apparently heats a significant amount of coronal gas well beyond the shock itself.

How do stars form?

Helium-like Diagnostics

While the temperature diagnostics for Mg XI, Ne IX, and O VII all give roughly the same result, the density diagnostics are significantly different.

TW Hya: Accretion & X-rays

TW Hya: A 10 Myr old "Sun" that is still growing by accreting mass from a disk

Brickhouse et al. 2010

The Velocity of Intragalactic Gas in Elliptical Galaxies

NGC 5044

NASA/CXC/U. Ohio/T.Statler & S.Diehl

NGC 5813

NASA/CXC/SAO/S.Randall et al.

Fe XVII: Astrophysics & Theory

Fe XVII: Astrophysics & Theory

Data

from

LCLS

Fe XVII: Physics & Theory

Bernitt+ 2012

Early Improvements Pre-AtomDB

In this case, the poor fit between 9-12 Å is likely due to missing lines, not bad modeling.

Impact of Data Updates

Current Problems: Ionization Balance

 30% errors on the ionization & recombination rates leads to ~30% errors in the ion population.

Output to the limits of an ion's population, these errors are increased up to 60%.

Wavelength Error Data

Wavelength errors incomplete

How do stars form?

Helium-like Diagnostics

While the temperature diagnostics for Mg XI, Ne IX, and O VII all give roughly the same result, the density diagnostics are significantly different.

Errors / Sensitivity Testing

Theoretical calculations can use Monte-Carlo methods, varying the input atomic structure or calculation size to estimate sensitivities. Care is needed in using these, but they are better than providing no estimate at all.

See also Bravo & Martínez-Pinedo (2012)

Astro-H – Launching 2015 (!)

- Launch site:
 - Tanegashima Space Center, Japan
- Launch vehicle: JAXA H-IIA rocket
- Orbit Altitude: 550km
- Orbit Type: Approximate circular orbit
- Orbit Inclination: ~31 degrees
- Orbit Period: 96 minutes
- •Total Length: 14m
- Mass: <2.6 metric ton
- Power: <3500 W
- Telemetry Rate: > 8 Mbps (X-band)
- Recording Capacity: > 12 Gbits
- Mission life : > 3 years

Figure of Merit for Detecting Weak Lines

What Do X-ray Astronomers Need? (To be ready for Astro-H)

- Precise and accurate data for calibration and interpretation. Ordered by importance:
 - Wavelengths
 - Line widths/shapes/blends
 - Fluxes
- Reliable and practical estimates of data accuracy (especially in X-ray astronomy!)

Brickhouse et al. 2010

- Photoionized plasmas are more complex as both collisional and photon cross sections are relevant.
- However, H-like, He-like, and Fe ions are still key (although other ions play a larger role).

A Few Words about X-ray Needs NGC 3783 – X-ray bright Seyfert galaxy; 200 ksec HETG, 280 ksec RGS observations

Krongold et al. 2003; also Netzer et al. 2003 and Behar et al. 2003

Calibration: Fluorescent Lines

Hoelzer+ 1997

The fluorescent lines from radioactive sources are complex of many lines.

Line widths measured by current calorimeters are dominated by the natural line widths – which are not known for many useful elements!

Calibration: Absorption Cross Sections

Absorption edges and related features still need a lot of work...

Calibration: Wavelengths

 By combining laboratory measurements and theoretical structure calculations, can get highly accurate (few mÅ) wavelengths.

• Detectors with R>1000 require this kind of accuracy!

Conclusions

Point #1:

Maintaining a tight connection between identified astrophysical questions and lab astro measurements and calculations is key to motivating progress (and funding).

Conclusions

Point #2:

15 years ago, we knew existing X-ray spectral models would not survive the imminent arrival of new capabilities from Chandra and XMM-Newton

- Inadequate Fe L shell models with missing lines and inaccurate wavelengths
- Out of date models for H, He-like ions

Conclusions

Point #3:

Astro-H will soon increase the effective area of X-ray spectroscopy 100-fold

- Some data are still missing: Ni L-shell, Fluorescent lines from select ions, Fe L-shell wavelengths, <u>AND</u>
- Current approach of assuming zero spectral model errors will lead to data that cannot be interpreted.

Backup

Astro-H Instrumentation

"X-ray Line Emission from the Sun"

Unexpectedly strong solar X-rays were first detected on August 5, 1948 from a repurposed V-2 rocket launch.

The X-rays and optical data on the Solar corona suggested a ~10⁶K plasma was responsible

Burnight 1949, Phys Rev 76, 165

B12. Soft X-Radiation in the Upper Atmosphere. T. R. BURNIGHT, Naval Research Laboratory.—A simple experiment consisting of small casettes containing photographic films and plates behind thin aluminum and beryllium windows of various thicknesses have been flown in a number of rockets at White Sands. On August 5, 1948 such an experiment obtained exposures through .076 cm beryllium windows indicating an unexpected intensity of radiation of wave-length shorter than 4 angstroms. On November 18, 1948 an experiment with .00076 and .00153 cm thickness aluminum and .0254 cm beryllium windows was flown with no indication of x-rays being obtained. On December 9, 1948 an identical experiment obtained appreciable blackening through .00076 cm aluminum windows but not through .0254 cm beryllium windows. The sun is assumed to be the source of this radiation although radiation of wave-length shorter than 4 angstroms would not be expected from theoretical estimates of black body radiation from the solar corona. A semiquantitative determination of the intensi-

ties indicated has been made, and the possible correlation with solar activity at the time of firing will be presented.

Identifying Recombining Plasmas – High-resolution spectra

