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Data

@ Y;, background contaminated photon counts in a source exposure
over T = 48984.8 seconds (13.6 hours),

@ X, photon counts in the exposure of pure background over T seconds.

2/19



Goals of the Project

@ To develop a fully Bayesian model to infer the distribution of the
intensities of all the sources in a population.

@ To identify the existence of dark sources in the population.
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© The basic hierarchical Bayesian model

@ Extensions of the basic model

© Extensive simulation studies:

o Robustness of the model
o Non-informativeness of the prior

@ Identifying the existence of dark sources via hypothesis testing:

e Calculation of test-statistic and posterior predictive p-value
e Simulation study

© Real Data Application

@ One Difficult Problem and Discussion
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Basic Hierarchical Bayesian Model

o Level I:
Yi = Si+ B
S,-|)\,- ~ Poisson(rie; T \;)
Bi|¢ ~ Poisson(a;T¢)
X|§ ~ Poisson(ATY¢)

@ §S; (counts): number of photons from source i in the source region,

@ [3; (counts): number of photons from the background in the source region,
@ )/ (counts/s/cm?): the intensity of source 7,

o & (counts/s/pixels): the intensity of background,

@ T (seconds): exposure time, T = 48984.8,

@ ¢ (cm?): the telescope effective area,

e rj:proportion of photons from source i expected to fall in source region,
@ a; (pixels): the size of source region i,

o A (pixels): the size of background region.

S, B;, A\;, € are all unobserved/latent, T, e;, rj, a;, A are all known constant. Y;, X are observed data.
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Basic Hierarchical Bayesian Model

o Level IlI:
& ~ Gamma(ag, fo)
=0 with probability 7y,
Aile, B, g . .
~ Gamma(a, )  with probability 1 — 4.
. o e
@ Level Ill: Prior on the hyper-parameters 7y, it = B, 0= E
g ~ Unif(0,1)
1 1
P(p,8) o 5 lu>0,0>0,

Gt (- G+ (0 <)
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Model Extension |: Overlapping Sources

@ Notation:

e O={i, - ,ix} indicates the region formed by the overlap of source
i, -+ ,ix. For example, Oy = {1,2,4}, O, = {1}.

e O: the collection of all such regions.

@ Level | model:
Yo = So +Bo = Zsoj —1—80,
Jjeo
Soj|Aj ~ Poisson(reieo TA))
Bo|¢ ~ Poisson(ao TE)

»@

Clus19r 1 Cluster 2
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Model Extension Il: Different Background Intensities

@ In our data, the background intensity has an increasing trend as the
projected angle (in arcmin) on the sky from the center of the field of
view increases from 0 to 16.

Projected Angle | Counts (counts) | Region (pixels) | Intensity (counts/pixels)
0-6 219962 22029408 0.0010
6-8 146332 14093856 0.0104
8-16 285300 26448800 0.0108
overall 0-16 651891 62572560 0.0104

7/19



Model Extension Il: Different Background Intensities

@ Notation:

@ X (counts): number of photons collected in background region k over T
seconds

o & (counts/s/pixels): the background intensity in regions k
o A (pixels): the size of background region k
o O: the collection of source regions in the background region k

o Model:

e For counts from the pure background:
Xic|€x ~ Poisson(A, T&)
e For counts from the source region O € O:

Bo|&k ~ Poisson(a, T)
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Simulation St

dy: The Robustness of the Model

Y; ~ Poisson(r;e; TA; +5), for i =1,---,1000, X = 2.5 x 10°,

=0 with probability 7y,
ri€; T)\,'
~ Gammal[u* = 15,0*]  with probability 1 — mq.
Td
0" 0 01 | 02 0.3 0.4 05 0.6 0.7 0.8 0.9
., | 0002 [ 0111 [ 0209 [ 0281 | 0422 | 0506 | 058 | 0.69 | 0.795 | 0.866
(0,0.01) | (0.09,0.14) | (0.17,0.24) | (0.26,0.33) | (0.37,0.44) | (0.48,0.55) | (0.53,0.61) | (0.68,0.75) | (0.76,0.82) | (0.86,0.91)
o | 0009 0102 | 0226 | 0.255 | 0.367 | 0.525 | 0.589 | 0.702 | 0795 | 0.838
(0,0.03) | (0.07,0.13) | (0.18,0.27) | (0.22,0.31) | (0.33,0.42) | (0.48,0.57) | (0.52,0.62) | (0.64,0.73) | (0.77,0.85) | (0.78,0.93)
0.021 | 0117 | 0.159 | 032 | 0.366 | 0509 | 0.54 | 0.703 | 0.76 | 0.791
200 (0,0.05) | (0.06,0.17) | (0.11,0.24) | (0.24,0.37) | (0.29,0.44) | (0.41,0.55) | (0.49,0.62) | (0.62,0.76) | (0.68,0.83) | (0.47,0.95)
soo || 0007 | 0134|0231 | 031 | 0320 | 0447 | 0.637 | 0.733 | 0816 | 0.9
(0,0.06) | (0.03,0.18) | (0.13,0.3) | (0.27,0.43) | (0.18,0.44) | (0.21,0.54) | (0.53,0.69) | (0.65,0.77) | (0.75,0.88) | (0.87,0.95)
oo || 0:005 | 0.067 | 0266 | 0262 | 0505 | 0561 | 0.564 | 0.606 | 0.789 | 0.931
(0,0.08) (0,0.22) | (0.12,0.39) | (0.03,0.35) | (0.41,0.58) | (0.51,0.68) | (0.14,0.67) | (0.52,0.84) | (0.5,0.9) | (0.73,0.97)
oo 0160296 | 0176 | 0415 | 0418 | 0568 | 0.594 | 0.544 | 0.829 | 0.921
(0.02,0.33) (0,0.4) (0,0.36) | (0.07,0.54) | (0.08,0.61) | (0.05,0.64) | (0.11,0.74) | (0.04,0.75) | (0.23,0.9) | (0.73,0.98)
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Simulation Study: The Robustness of the Model

Y; ~ Poisson(rje; TA; + 10), for i =1,---,1000, X = 2.5 x 10°,

re T 0 with probability 7y,
~ Gamma[y* = 15,0*]  with probability 1 — 4.
Td

6* 0 01 | 02 | 03 [ 04 [ 05 0.6 0.7 0.8 0.9
L || 0:006 [ 0.133 | 021 0312 | 0.399 | 0.498 | 0.588 | 0.727 | 0.745 | 0.889

(0,0.02) | (0.09,0.15) | (0.17,0.24) | (0.26,0.34) | (0.34,0.43) | (0.46,0.54) | (0.52,0.62) | (0.69,0.76) | (0.74,0.82) | (0.85,0.91)
Lo | 0-003 | 0.06 0.257 | 0257 | 0.377 | 0.581 | 0.56 0.719 | 0.816 | 0.911

(0,0.03) | (0.03,0.11) | (0.18,0.28) | (0.19,0.3) | (0.35,0.45) (0.5,0.6) (0.5,0.64) | (0.67,0.76) | (0.78,0.87) | (0.85,0.94)
2o || 0028 0188 | 0.221 | 0.291 | 0.331 | 0537 | 0523 | 0.736 | 0.785 | 0.903

(0,0.1) | (0.09,0.22) | (0.12,0.27) | (0.24,0.4) | (0.24,0.47) | (0.44,0.6) | (0.45,0.62) | (0.64,0.79) | (0.61,0.82) | (0.69,0.95)
sop || 002 [ 0034 [ 0193 [ 0375 | 0.417 | 0437 | 0604 | 0745 | 0818 | 0.951

(0,0.1) (0,0.15) (0.07,0.31) | (0.24,0.45) | (0.31,0.51) | (0.21,0.57) | (0.5,0.71) | (0.64,0.81) | (0.58,0.88) | (0.73,0.96)
s || 0004 | 0274 | 0188 | 0.095 | 0.497 | 0521 | 0.713 | 0.769 | 0.642 | 0.935

(0,0.09) (0,0.26) (0,0.31) (0.06,0.4) | (0.3,0.57) | (0.24,0.65) | (0.5,0.76) | (0.32,0.85) | (0.19,0.9) | (0.54,0.97)
1oop || 0-106 | 0268 [ 0082 [ 0.339 | 0.327 | 0.542 | 0.633 | 0476 [ 0812 | 0.959

(0,0.27) (0,0.38) (0,0.37) (0.07,0.59) | (0.06,0.61) | (0.13,0.73) | (0.04,0.69) | (0.05,0.79) | (0.48,0.93) | (0.82,0.98)
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Simulation St iveness of the Prior

B; ~ Poisson(5), my = 0.4, p* =15 6* =100
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Simulation Study: Non-informativeness of the Prior

B; ~ Poisson(5), my = 0.4, p* =15 6* =500
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Simulation Study: Non-informativeness of the Prior

Histogram of Y;'s
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Hypothesis Testing for Existence of Dark Sources

@ Hypothesis Testing:
Hy:mqg=0, H,:mg>0.
@ Reject Hy if the p-value is low,
p-value = P(T(D) > T°%|Hp),

where D ~ Hp and T(D) is a test statistic.
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Hypothesis Testing for Existence of Dark Sources

@ Hypothesis Testing:
Hy:mqg=0, H,:mg>0.
@ Reject Hy if the p-value is low,
p-value = P(T(D) > T°%|Hp),

where D ~ Hp and T(D) is a test statistic.

@ However, ]D)‘Ho is unknown because « and 8 are unknown:
Aila, B~ Gamma(a, B)
o Posterior predictive p-value (ppp):
ppp = Po(T(D) > Tobs|Debs),

where D ~ D|Hp with (a, 8) ~ a,B‘ID)ObS, Ho.
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Hypothesis Testing for Existence of Dark Sources

@ Estimation of ppp:
@ Draw (a(t) ,B(t)) from ( a,ﬁ)}DObs fort=1,2,---.m

@ For each pair (o), B(t)) simulate D) from the null model and
calculate T() = T(D),

© Estimate ppp by

1 m
~ =Y (T(t) > T"”S) .
PP~ — ;:1
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Hypothesis Testing for Existence of Dark Sources

@ Estimation of ppp:
© Draw (a(t),ﬁ(t)) from (a,ﬁ)}DObs fort=1,2,---,m,

@ For each pair (!, 81), simulate D(*) from the null model and
calculate T() = T(D),

© Estimate ppp by
ppp ~ 1 i/ (T(t) > TObs)
m= - .

@ Likelihood Ratio Test Statistics:

SUPq B,y La(Oé, B, md ‘]D))
SUP4. 8 Lo(a,ﬁm) ’

We use T(D) = log(R(ID)) as the test statistic.

R(D) =
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Calculation of Test Statistics

@ One simplification: £ = X
° Lo(a,B|Y):

Po(Y|e, B) :/P(Y]A)PO(A a, B)dA

B A YN Y-+ a)
B CTQ)H [ZC]I <J) (B4 rieT)Yimita|”

° La(a,ﬁ,de):

P.(Y|a, 8, 7q) :/P(Yy,\)Pa(A{a,ﬁ,wd)dA

N

:CH

i=1

Y;

7Tdc,-Y"+(1—7rd) B ZC{(K) (Y —Jj+a) ]

(o) J) (B+rieT)Yizite

Jj=1
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Simulation Study

Y; ~ Poisson(r;e; TA; +5), for i =1,---,1000, X = 2.5 x 10°,

{: 0 with probability 4,
r,-e,-T)\,- . -
~ Gamma[p* = 15,60*]  with probability 1 — 7.

g
6| o Jor]o2] 03] 04]05]06]07]08]09
50 1 1 0 0 0 0 0 0 0 0
100 |[0.179| O 0 0 0 0 0 0 0 ]0.001
200 {0332 O 0 0 0 0 0 0 0 ]0.197
300 1 0.01 0 0 ]0.002|0.003| O 0 0 ]0.001
500 1 0.232 | 0.001 | 0.064 | O 0 10.058 | 0.01|0.035 | 0.039
1000 || 0.074 | 0.211 | 0.226 | 0.051 | 0.118 | 0.152 | 0.147 | 1 |0.334 | 0.03
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Simulation Study

Y; ~ Poisson(r;e; TA; + 10), for i =1,---,1000, X = 2.5 x 10°,

ri€; T)\,' {

=0
~ Gamma[p* = 15, 6*]

with probability 7y,

with probability 1 — mq.

T

6] o [or]o2]03]04]05]06]07]08]09
50 [[018 ] 0 0 0 0 0 0 0 0 0
w0 [[ 1 [0.002] © 0 0 0 0 0 0 0
200 [[0.034] © 0 0 0 0 0 0 0 [0.018
so0 || 1 1 [o0.002] 0 0 [0.002] © 0 [0.006 | 0.02
s00 | 1 ]0.087| 011 [0.025] 0 [0.015] 0 [0.0720.207 [ 0.149
1000 || 0.426 | 0.46 | 0.392 | 0.086 | 0.146 | 0.05 [0.451 | 1 | 0.05 |0.016
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Simulation Study: Distribution of ppp

B; ~ Poisson(5), my =0.4, p*=15 6* =100

All the ppp's are 0.
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Simulation Study: Distribution of ppp

B; ~ Poisson(5), my = 0.4, p* =15 6* =500
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Simulation Study: Distribution of ppp

B; ~ Poisson(5), w4 = 0.4, p*=15 0*= 1000
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Real Data Analysis: No overlap sources, arcmin < 6

@ Posterior distribution of the hyper-parameters
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Real Data Analysis: No overlap sources, arcmin < 6

@ Histogram of the test statistics: ppp ~ 0.087.

probability

0.087

test statistics 15/19



Real Data Analysis: all the overlap sources, arcmin < 6

@ Posterior distribution of the hyper-parameters
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Real Data Analysis: all the overlap sources, arcmin < 8

@ Posterior distribution of the hyper-parameters (two background

intensities).
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Difficulty

@ Calculation of ppp in the presence of overlapping sources.
@ We need to calculate the likelihood ratio test statistic:

SUPq 8.y Lo(a, B, Wd‘Y)

RO = sup, 5 Lo(a, B|Y)
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Difficulty

@ Calculation of ppp in the presence of overlapping sources.
@ We need to calculate the likelihood ratio test statistic:

SUPq,g.r, La(c, B, Wd‘Y)

RO = sup, 5 Lo(a, B|Y)

@ For simplicity:
e N =2, the two sources overlap.

o O={01={1},0. ={2},0s ={1,2}}
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Difficulty

@ Calculation of ppp in the presence of overlapping sources.
@ We need to calculate the likelihood ratio test statistic:

SUPq,g.r, La(c, B, wd‘Y)

RO = sup, 5 Lo(a, B|Y)

@ For simplicity:
e N =2, the two sources overlap.

o O={01={1}, 0, ={2},0s = {1,2}}
@ The “complete” data likelihood under the null hypothesis is
Po(Y, Ala, B) = P(Y1| A1) P(Y2|A2) P(Y3|A1, A2) P(A1, Az |cv, B)
o e MTRRAGTINGTI (1 4 c3A1) (1 + c3h2) (1 + cs A1 + ceA2) 2,

where ¢;'s are some constants.
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Difficulty

@ Calculation of ppp in the presence of overlapping sources.
@ We need to calculate the likelihood ratio test statistic:

SUPq,g.r, La(c, B, wd‘Y)

RO = sup, 5 Lo(a, B|Y)

@ For simplicity:
e N =2, the two sources overlap.
0o 0= {Ol = {1}’ 0, = {2}7 03 = {132}}
@ The “complete” data likelihood under the null hypothesis is
Po(Y, Ala, B) = P(Y1| A1) P(Y2|A2) P(Y3|A1, A2) P(A1, Az |cv, B)
o e MTRRAGTINGTI (1 4 c3A1) (1 + c3h2) (1 + cs A1 + ceA2) 2,

where ¢;'s are some constants.

® We need to integrate out A; and A to get the likelihood Lo(c, B]Y).
@ The calculation is “feasible” but very complicated when we have more

overlaps and when N is large.
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Real Data Analysis: all the overlap sources, arcmin < 8

e Posterior distribution of the hyper-parameters (same background
intensities).
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	Appendix

