Stochastic Model for Quasar Variability

Aneta Siemiginowska

Astrophysicist

Harvard-Smithsonian Center for Astrophysics (CfA)

Collaboration with: Brandon Kelly, Malgorzata Sobolewska

Outline

- Quasars
 - structure, emission, variability
- Data characteristic
- Observed variability
- Stochastic modeling
- Conclusions and future

Quasars

1040

NATURE

March 16, 1963 Vol. 197

3C 273 : A STAR-LIKE OBJECT WITH LARGE RED-SHIFT

By DR. M. SCHMIDT

Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena

THE only objects seen on a 200-in. plate near the positions of the components of the radio source 3C 273 reported by Hazard, Mackey and Shimmins in the preceding article are a star of about thirteenth magnitude and a faint wisp or jet. The jet has a width of 1''-2'' and extends away from the star in position angle 43° . It is not visible within 11'' from the star and ends abruptly at 20'' from the star. The position of the star, kindly furnished by Dr. T. A. Matthews, is R.A. 12h 26m 33-35s $\pm 0.04s$, Decl. $\pm 2^\circ$ 19' $42.0'' \pm 0.5''$ (1950), or 1'' east of component *A* of the star with the jet is suggestive and intriguing.

Table 1.	WAVE-LENGTHS AND	IDENTIFICATIONS		
λ	λ/1-158	λο		
3239	2797	2798	Mg II	
4595	3968	3970	He	
4753	4104	4102	Hδ	
5032	4345	4340	H_{γ}	
5200 - 5415	4490-4675		- •	
5632	4864	4861	$H\beta$	
5792	5002	5007	[0 111]	
6005 - 6190	5186-5345		• • • •	
6400-6510	5527-5622			

Oke in a following article, and by the spectrum of another star-like object associated with the radio source 3C 48 discussed by Greenstein and Matthews in another communication.

The unprecedented identification of the spectrum of an

Chandra X-ray Observatory

Redshift - a shift of emission lines in the spectrum gives the distance Quasars are detected at high distances The most distance know today is at z=7.1 (0.763 Gyr after BB, now 13.67 Gyr)

Aneta Siemiginowska

Quasar Structure

- Accretion Disk
- Hot corona
- Torus
- Clouds
- Relativistic Jet

All contribute to the emission

Black Hole gravity is fundamental to the quasar power

Aneta Siemiginowska

Why study variability?

- The primary emission is not resolved!
- The variability allows us to "look inside" the unresolved region:
 - constrain the emission region size
 - learn about energetics of the system
 - understand the physics, e.g. viscosity constraints, connection between different emission sites

Origin of Variability

• On the line of site

- Occultation events clouds, torus, wind
- Microlensing

Intrinsic to the quasar

- Optical emission
 - » Continuum Accretion flow
 - » Emission lines BLR
- X-rays
 - » Corona, hot plasma
 - » Outflow (also in radio, γ-rays)
 - » Reflection

Variability Timescales

Light crossing time at the characteristic radius 100 r_s

 $t_{lc} = 1.1 \ M_8 R_{100rs} \, days$

Orbital time

$$t_{orb} = 104 \ M_8 (R_{100rs})^{3/2} \ days$$

• Thermal (note the viscosity dependence) time

$$t_{th} = 4.6 \ (\alpha_{0.01})^{-1} \ M_8 \ (R_{100rs})^{3/2} \ years$$

 $R_{100rs} = R / 100r_s$ - characteristic radius $r_s = 2 GM_{bh}/c^2$ $M_8 = M_{bh} / 1e8M_{sun}$ - black hole mass

Statistics, October 1, 2013

Long-term Quasar Variability

http://ned.ipac.caltech.edu/level5/March02/Courvoisier/Cour6_2.html

Short-term Quasar Variability

Kelly, Bechtold & Siemiginowska 2009

- Good optical data covering a few years MACHO, OGLE, AGN Watch, PanSTARRS
- Continuum variations on long and short times
- Relatively small amplitude (10-20%)
- No periodic variations

The best sampled optical light curves (every 30 min) from *Kepler* - only a few AGN known Probe orbital timescales to thermal timescales

X-ray and y-ray Variability

- · Variations on all the observed timescales
- Difference in time-bins and coverage
- Flares?
- Origin in a jet or hot corona

XMM-Newton X-rays

Aharonian et al 2007

10

Modeling Variability: PSD

Log (frequency)

- PSD modeling:
 - Non-parametric
 - good for quantifying the variability (e.g. characteristic time-scales)
- But has several limitations:
 - limited in discriminating between physical models for variability.
 - Shape evolves with time, e.g. dramatic changes between different spectral states
 - Light curves have a finite duration time and often non-uniform sampling causing windowing effects
 - Power from low frequency can leak into high frequency (e.g. red noise leak) and from high frequency to low frequency (aliasing)
 - Periodicity in the optical data due to observational constraints by the Earth orbit etc.

see Uttley & McHardy 2001, Uttley et al. 2002, Vaughan et al. 2003, Uttley et al. 2005

11

Modeling Variability: Time-series

- Assume that the observed variations are generated by an underlying stochastic process - a parametric model
- Observations are different realizations (samples) from that process
- Main goal: determine the NATURE of the physical system responsible for that process.
- Modeling the data (light curves) directly is free of the windowing effects.
- Gives unbiased estimates of the characteristic timescales and variance of the process.
- Needs a parametric model for a light curve use CAR (continuous auto-regression or OU) - characteristic frequency, rate of perturbations and the amplitude
- Link to the accretion disk equations: a perturbation in the accretion rate driving the changes in the emitted flux

Stochastic Model for Quasar Light curves

$$dX(t) = -\omega_0(X(t) - \mu)dt + \zeta dW(t), \quad \omega_0 \zeta > 0$$
Stochastic process
$$Parameters: \ \mu, \ \omega_0, \zeta$$
Mean value, characteristics frequency and the amplitude of the driving noise
$$relaxation time$$

$$\tau = 1/\omega_0$$

$$Y_M(t) = \mu + \sum_{i=1}^M c_i X_i(t)$$

$$C_i \text{ mixing weights}$$
Superposition

Disk Equations

Evolution of the Standard Disk

Surface density

$$\frac{\partial \Sigma}{\partial t} = \frac{3}{r} \frac{\partial}{\partial r} \left[r^{1/2} \frac{\partial}{\partial r} (r^{1/2} \nu \Sigma) \right].$$

Accretion rate

$$\dot{M}(r, t) = 6\pi r^{1/2} \frac{\partial}{\partial r} (r^{1/2} \nu \Sigma).$$

 $x = r^{1/2}$
Perturbation of $r^{1/2} \nu \Sigma$

$$=> u(x,t) = x\Delta(v\Sigma)$$

 $\Delta \dot{M}(r,t) \propto \partial u(x,t)/\partial x$

Aneta Siemiginowska

Simulating Optical Lightcurves

Kelly, Bechtold & Siemiginowska, 2009 ApJ 730 52

- Simple Stochastic process
- P(f) ~ f⁻² are consistent with damped random walk
- P(f) Break at the characteristic timescale of the process
- Possible link to physical parameters:

- Characteristic frequency, i.e. relaxation time of the process, might relate to the time required for diffusion to smooth out local accretion rate perturbations

- Amplitude of the driving noise,

variability resulting from local turbulence or other perturbations to the magnetic field etc.

15

Simulating Optical Lightcurves

16

Modeling Optical Light curves

NGC 5548

- 100 quasars with optical light curves
- Defined likelihood and performed MCMC analysis to model the observed light curves.
- Best fit light curve, characteristic timescales and variability parameters
- NGC 5548 fit with the characteristic timescale of 214 days

$$p(x_1, \dots, x_n | b, \sigma, \tau) = \prod_{i=1}^n \left[2\pi \left(\Omega_i + \sigma_i^2 \right) \right]^{-1/2} \\ \times \exp\left\{ -\frac{1}{2} \frac{\left(\hat{x}_i - x_i^* \right)^2}{\Omega_i + \sigma_i^2} \right\}$$
(6)

$$x_i^* = x_i - b\tau \tag{7}$$

R Magnitude

Modeling Optical Light curves

Sample of 100 quasars: MACHO, PG sample, AGN Watch

Model Comparison: Deterministic v. Stochastic

Results of evidence-based model comparison.

6304 quasars SDSS Stripe 82 20 models

Bayes Factors for model comparison

Model	Number of	No decisive	No decisive	No decisive	No decisive	Max
	model parameters	evidence against	evidence against	evidence against	evidence against	evidence
		it at 3σ	it at 5σ	it at 7σ	it at 10σ	
Constant	1	0	0	0	0	0
Constant plus noise	2	59	64	73	94	4
Sinusoid (flat prior in P)	4	28	37	46	58	2
Sinusoid (flat prior in log P)	4	20	23	29	39	2
Sinusoid (periodogram prior)	4	27	30	39	50	4
Two sinusoids (flat priors in P)	7	33	36	45	60	7
Sinusoid (flat prior in P) plus noise	5	467	583	721	921	149
Wiener process (random walk)	2	2205	2724	3230	3949	11
OU process (damped random walk)	3	6023	6069	6093	6131	5047
Gaussian CAR(2) process ($\phi_1 = \phi_2 = 0.1$)	2	0	0	0	1	0
Gaussian CAR(2) process ($\tau_1 = \tau_2$)	3	1	2	2	3	0
Gaussian CAR(2) process ($\tau_1 \neq \tau_2$)	4	5	5	5	5	5
Cauchy CAR(1) process ($\phi = 1$)	2	81	108	172	361	36
Symmetric stable CAR(1) process ($\phi = 1, \beta = 0$)	3	0	0	0	0	0
Stable CAR(1) process ($\phi = 1$)	4	0	0	0	0	0
Gaussian CARMA(1,1) process	4	0	0	0	0	0
Constant + Gaussian ARCH(1) process	3	236	268	306	355	69
Sinusoid + Gaussian ARCH(1) process	6	923	1208	1529	2096	155
Gaussian CAR(1)-ARCH(1) process	4	1884	2257	2639	3183	219
Gaussian CAR(1)-GARCH(1,1) process	5	3542	3912	4285	4751	536
Gaussian CARMA(1,1)-GARCH(1,1) process	6	1533	2041	2593	3486	58

Notes.For each model under consideration we quote the number of model parameters, the number of QSO lightcurves where there is no decisive evidence against this model at a specified confidence level, and the number of QSO lightcurves where each model provides the highest evidence. The upper block of the table contains deterministic models. The middle block contains stochastic models with constant variance, while the lower block contains stochastic process with stochastic variance. (Periods of all sinusoids are between 1 and 10000 days.) The last column adds up to the total of 6304 QSO lightcurves, the other columns do not.

Andrae, Kim D-W, Bailer-Jones, 2013, A&A, 554, A137

Simulating X-ray Light curves

- X-rays from hot corona
- Two breaks in PSD => two characteristic timescales
- Linear Combination of Stochastic processes
- Model light curves Likelihood analysis

Observations probe different parts of the same process

Modeling X-ray Variability

Kelly, Sobolewska & Siemiginowska, 2011 ApJ 730 52

Modeling X-ray Variability

100 realizations of the PSD given the observed lightcurves

Modeling X-ray Light Curves

Best method to measure a black hole mass (see also Kelly et al 2013 for Poisson case)

Modeling y-ray Light Curves

Single OU process

Superposition

Modeling y-ray Light Curves

Modeling y-ray Light Curves: Outliers

How can we separate the flares/outbursts from the continuous stochastic variations?

Identifying Flares

When does the flare begin?

Modeling Light Curves: Summary

- Variations consistent with the stochastic process -perturbations to the luminosity could be caused by magnetic turbulence.
- Perturbations smoothed on the timescales shorter than the orbital or thermal timescales
- Timescales correlates with M_{bh} and luminosity
- Significant anticorrelation between M_{bh} the amplitude of the driving noise => very good constraints on the mass.
- Both short and long-term observed light curves due to the same process.
- Origin of optical and X-ray variations partially shared.
- Mixed stochastic process describes the evolution of viscous, thermal and radiative perturbations

28

Stochastic View of the Accretion Disk

Dexter and Agol 2011 ApJ 727 L24

Temperature maps assuming that $\text{Temp}(\phi, r, time)$ follows a damped random walk in each independent zone n assuming the local temperature characteristic timescale of 200 days.

Aneta Siemiginowska

Outbursts, Flares and Shortest Timescales

- Large amplitude, rapid rise and short durations events are not described by the stochastic random walk in linear regime - variability due to physical processes related to a relativistic jet?
- Best observational examples of rapid outbursts can be found in gamma-rays and TeV
- Optical variations in Kepler data probe shortest dynamical timescales, these data are not consistent with the linear regime

Optical lightcurves from Kepler

slope < -2

Future Projects

How to model the flares? Non-linear models for Kepler light curves

