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I High-Energy Astrophysics

I Spectral Analysis

I Calibration Products

I Scientific Goals
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High-Energy Astrophysics

I Provide understanding into high-energy regions of the
Universe.

I Chandra X-ray Observatory is designed to observe X-rays from
high-energy regions of the Universe.

I X-ray detectors typically count a small number of photons in
each of a large number of pixels.

I Spectral Analysis aims to explore the parameterized pattern
between the photon counts and energy.
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An Example of One Dataset

TITLE = EXTENDED EMISSION AROUND A GIGAHERTZ
PEAKED RADIO SOURCE
DATE = 2006-12-29 T 16:10:48
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Calibration Uncertainty

I Effective area records sensitivity as a function of energy.
I Energy redistribution matrix can vary with energy/location.
I Point Spread Functions can vary with energy and location.
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Incorporate Calibration Uncertainty

I Calibration Uncertainty in astronomical analysis have been
generally ignored.

I No robust principled method is available.

I Our goal is to incorporate the uncertainty by Bayesian
Methods.

I In this talk, we focus on uncertainty in the effective area.
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Calibration Samples

Two Main Problems

I The true effective area curve can’t be observed, when we try
to incorporate calibration uncertainty in estimating source
parameters.

I We don’t have parameterized form for effective area curve. It
makes sampling hard to approach.
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Calibration Samples

Generating Calibration Samples

I Drake et al. (2006),
suggests to generate
calibration samples of
effective area curves to
represent the uncertainty.

I Calibration Samples:
{A1,A2,A3, ...,AL}
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Principle Component Analysis
Model Building
Three source parameter sampling schemes

Three Main Steps

I Use Principle Component Analysis to parameterize effective
area curve.

I Model Building, that it combining source model with
calibration uncertainty.

I Three source parameter sampling schemes.
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Principle Component Analysis
Model Building
Three source parameter sampling schemes

Use PCA to represent effective area curve

A = A0 + δ̄ +
∑m

j=1 ej rjvj

A0 : default effective area,

δ̄ : mean deviation from A0,

rj and vj : first m principle component eigenvalues & vectors,

ej : independent standard normal deviations.

Capture 95% of uncertainty with m = 6 - 9.
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Principle Component Analysis
Model Building
Three source parameter sampling schemes

Use PCA to represent effective area curve

PCA method has nicely parameterized effective area curve.
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A simplified model of telescope response, only concerning
effective area uncertainty

M(E ; θ) = S(E ; θ) ∗ A(E )

M(E ; θ): Observed Photon Distribution,

S(E ; θ): True Source Model, we set it as poisson distribution with
expectation equal to
exp(−nH ∗ sigma(E )) ∗ Amp ∗ E (−gamma) + bkg

A(E ): Effective Area Curve.

θ: source parameter, θ = {nH ,Amp, gamma, bkg}
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Three source parameter sampling schemes

Scheme One: Fixed Effective Area Curved

I We assume A = A0, where A0 is the default affective area
curve, and may not be the true one,

I This scheme doesn’t incorporate any calibration uncertainty,

I The estimation may be biased and error bars may be
underestimated.

I Only one sampling step involved:
p(θ|M,A0) ∝ L(M|θ,A0)p(A0)
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Principle Component Analysis
Model Building
Three source parameter sampling schemes

Scheme Two: Pragmatic Bayesian, Lee et al(2011, Apj)

I Main purpose is to reduce complexity of sampling.

I This scheme ”completely” incorporates the calibration
uncertainty,

I Step One: sample A from p(A)

I Step Two: sample θ from p(θ|M,A) ∝ L(M|θ,A)p(θ)
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Principle Component Analysis
Model Building
Three source parameter sampling schemes

Scheme Three: Fully Bayesian

I Use correct Bayesian Approach,

I This scheme concerns about letting the current data influence
calibration products,

I Step One: sample A from p(A|M, θ) ∝ L(M|θ,A)p(A)

I Step Two: sample θ from p(θ|M,A) ∝ L(M|θ,A)p(θ)

I Most difficult approach to sample.
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Eight simulated data sets

The first four data sets were all simulated without background
contamination using the XSPEC model wabs*powerlaw, nominal
default effective area A0 from the calibration sample of Drake et
al. (2006), and a default RMF for ACIS-S.

I Simulation 1: Γ = 2,NH = 223cm−2, and 105 counts;

I Simulation 2: Γ = 1,NH = 221cm−2, and 105 counts;

I Simulation 3: Γ = 2,NH = 223cm−2, and 104 counts;

I Simulation 4: Γ = 1,NH = 221cm−2, and 104 counts;

The other four data sets (Simulation 5-8) were generated using an
extreme instance of an effective area.
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Results for Simulation 1
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Results for Simulation 2
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Results for Simulation 3
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Results for Simulation 4
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Results for Simulation 5
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Results for Simulation 6
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Results for Simulation 7
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Results for Simulation 8
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Quasar results

I 16 Quasar data sets were fit by these three models: 377, 836,
866, 1602, 3055, 3056, 3097, 3098, 3100, 3101, 3102, 3103,
3104, 3105, 3106, 3107.

I Most interesting founding for fully bayesian model is shift of
parameter fitting, besides the change of standard errors.

I Both comparisons of mean and standard errors among three
models are shown below.
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mean: fix-prag
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mean: fix-full
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mean: prag-full
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sd: fix-prag
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sd: fix-full
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sd: prag-full
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more plots

µ̂prag (Γ) =
µprag (Γ)−µfix (Γ)

σfix (Γ) , these lines cover 2 sd.
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more plots

µ̂full (Γ) = µfull (Γ)−µfix (Γ)
σfix (Γ) , these lines cover 2 sd.
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Data set 1878

model: xsphabs.abs1*(xsapec.kT1+xsapec.kT2)
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Data set 1878

model: xsphabs.abs1*(xsapec.kT1+xsapec.kT2)

I even for fixed arf model, the results are not good;

I try to add one proportion parameter, and add data
augmentation sampler to the code;

I till now, only one naive simulation has been done so far.
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Discrete wavelet transformation (DWT) for quiet.arf

0 200 400 600 800 1000

0
20
0

50
0

y

X

t

T−2W1
T−2W2
T−3W3
T−3W4

T−3W5

T−3W6

T−2V6

JIN XU New Results of Fully Bayesian



Outline
Background

Problem description
Methodology Research

New Results
Two concerns

New data sets
Applying wavelets to replace PCA

Discrete wavelet transformation (DWT) for quiet0934.arf
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DWT

I how to make summary of those parameters are the key point.

I future work is to sample these parameters and transform back
to arf.
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