A New Tone of EM algorithm in the Universe:Analysis of MMT/Megacam Data

Zhan Li(With f.b.bianco and p. protopapas)
Dec. 16

Agenda

- Backgrounds
- Models
- Some Numerical Results
- Discussion

Background

- In observing the objects in the space, there is a gap between the observable objects by direct observations and the observable objects by X -ray.
- Our Analysis of MMT/Megacam data is trying to fill the gap

Background

Background

Background

Background

- The data from MMT/Megacam is two dimensional time series data: we have two dimensional observations of the stars and we also have a time horizon
- We will indirectly observe the targeted objects via the stars
- Want to find out the "events" when the targeted objects pass the stars

Background

- How to identify the "events"? By the fluctuation of the flux of the stars

- Need to de-convolute the effects from the stars and the background

Background

Agenda

- Backgrounds
- Models
- Some Numerical Results
- Discussion

Models

- We will utilize the EM algorithm in the de-convolution
- Will present models with different assumptions/approaches
- Currently focus only on the de-convolution problem

Models

- We have binned data of photons, from both the background and the stars (bin size- a pixel or so)
- Notations and Setups of the question:
- Stars: $i=1, \cdots, n$
- Bins: $j=1, \cdots, m$
- Observed Data: $Y_{\text {obs }}=\left\{N_{1}, \cdots, N_{m}\right\}$ observed counts from each bin
- Missing Data: $Y_{m i s}=\left\{Z_{i j}\right\}, i=1, \cdots, n+1, j=1, \cdots, m$ the photons from star i to bin j . the subscript $\mathrm{n}+\mid$ means background

Models

- Model I:Fixed bin counts with Poisson Backgrounds

Models

- We does not place distribution assumptions on the number of photons in each bin and we assume the background in each bin are i.i.d. poisson
- Within each bin, the number of photons from each star(background excluded) follow a multinomial distribution(\tilde{N}_{j} total photons from stars)

$$
\left(Z_{1 j}, \cdots, Z_{n j}\right) \sim \operatorname{multinomial}\left(\tilde{N}_{j}, p_{1 j}, \cdots, p_{n j}\right)
$$

- Normal parameterization for PSF(point spread function)

$$
p_{i j}=\frac{q_{i} \phi\left(x_{j} ; \mu_{i}, \sigma_{i}\right)}{\sum_{i=1}^{n} q_{i} \phi\left(x_{j} ; \mu_{i}, \sigma_{i}\right)}
$$

Models

- Take the background into account

$$
\begin{aligned}
Z_{n+1, j} \mid N_{j} & \sim \operatorname{Pois}(\lambda) \mid \operatorname{Pois}(\lambda) \leq N_{j} \\
Z_{1 j}, \cdots, Z_{n, j} \mid N_{j}, Z_{n+1, j} & \sim \operatorname{multinomial}\left(N_{j}-Z_{n+1, j}, p_{1, j}, \cdots, p_{n, j}\right)
\end{aligned}
$$

Models

- Pros of the model:We do have the closed form solution for the updating equation:

$$
\begin{aligned}
\lambda^{\prime} & =\frac{\sum_{j} M_{j}}{m} \\
q^{\prime} & =\frac{\sum_{j} \tilde{q}_{j}\left(N_{j}-M_{j}\right)}{\sum_{j}\left(N_{j}-M_{j}\right)} \\
\mu_{1}^{\prime} & =\frac{\sum_{j} \tilde{q}_{j}\left(N_{j}-M_{j}\right) x_{j}}{\sum_{j} \tilde{q}_{j}\left(N_{j}-M_{j}\right)} \\
\mu_{2}^{\prime} & =\frac{\sum_{j}\left(1-\tilde{q}_{j}\right)\left(N_{j}-M_{j}\right) x_{j}}{\sum_{j}\left(1-\tilde{q}_{j}\right)\left(N_{j}-M_{j}\right)} \\
\sigma_{1}^{\prime} & =\left(\frac{\sum_{j} \tilde{q}_{j}\left(N_{j}-M_{j}\right)\left(x_{j}-\mu_{1}^{\prime}\right)^{2}}{\sum_{j} \tilde{q}_{j}\left(N_{j}-M_{j}\right)}\right)^{1 / 2} \\
\sigma_{2}^{\prime} & =\left(\frac{\sum_{j}\left(1-\tilde{q}_{j}\right)\left(N_{j}-M_{j}\right)\left(x_{j}-\mu_{1}^{\prime}\right)^{2}}{\sum_{j}\left(1-\tilde{q}_{j}\right)\left(N_{j}-M_{j}\right)}\right)^{1 / 2} \\
M_{j} & =\sum_{k=0}^{N_{j}} \frac{k \times e^{-\lambda} \lambda^{k} / k!}{\sum_{l=0}^{N_{j}} e^{-\lambda} \lambda^{l} / l!}
\end{aligned}
$$

Models

- Cons of the model:
- Tend to underestimate the background and over estimate the dispersion of the normal distribution
- Not explicitly estimating the intensity of flux: we only estimate the proportion in each normal

Models

- Model II: Poisson bin counts with Poisson Backgrounds

Models

- We will assume that the total number of photons from a star is following poisson distribution (Esch and et al. 2004)

$$
Y_{j} \mid \lambda_{i}, \lambda_{B} \sim \operatorname{Poisson}\left[\left(\sum_{i} P_{i j} \lambda_{i}\right)+\lambda_{B}\right]
$$

- And we will incorporate the location and dispersion of the stars through parameterization of PSF(point spread function)

Models

- Then, within the same bin(pixel), we have
$\left(Z_{1 j}, \cdots, Z_{n j}, Z_{n+1, j}\right) \sim \operatorname{multinomial}\left(N_{j}, \frac{\lambda_{1} P_{1 j}}{\sum_{i} \lambda_{i} P_{i j}+\lambda_{B}}, \cdots, \frac{\lambda_{n} P_{n j}}{\sum_{i} \lambda_{i} P_{i j}+\lambda_{B}}, \frac{\lambda_{B}}{\sum_{i} \lambda_{i} P_{i j}+\lambda_{B}}\right)$
- The parameterization of the PSF:

$$
p_{i j} \propto \phi\left(x_{j} ; \mu_{i}, \sigma_{i}\right)
$$

Models

- Pros:
- Explicitly model the intensity or flux of the star through the poisson parameter
- Better acknowledged in the research community
- Cons:
- We do not have the closed form solution for EM iteration, which is especially undesirable for the large scale problem we have

Models

- Model 3: Hierarchical Bayes

Models

- We will assume that the total number of photons from a star is following poisson distribution (Esch and et al. 2004)
- We will use Hierarchical Bayes instead of EM algorithm to Sample the posterior distribution of intensity and the PSF

Models

- Pros:Very effective in accounting for the uncertainty of parameters
- Cons: not conjugate prior, computational concerns...

Numerical Results

- Model I:

p	μ_{1}	μ_{2}	σ_{1}	σ_{2}	λ_{B}
$0.5(.49)$	$80(79.4)$	$30(30.0)$	$10(9.8)$	$10(11.5)$	$100(83.5)$
$0.5(.27)$	$80(83.2)$	$50(52.2)$	$10(8.0)$	$10(19.7)$	$100(64.4)$
$.3(.32)$	$80(79.1)$	$30(29.9)$	$10(10.4)$	$10(11.4)$	$100(75.5)$

Discussion and Future work

- Need a computational effective way to de-convolute the stars with certain accuracy
- Next step: look at the time series data

Thank you and Happy Holiday!

