◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two Statistical Problems in X-ray Astronomy

Alexander W Blocker

October 21, 2008

	-		\sim
Outime	ine	uι	U

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

- 2 Replacing stacking
 - Problem
 - Current method
 - Model
 - Further development

3 Time symmetry

- Problem
- Model
- Computational approach

Introduction

- Recent projects have focused on two areas:
 - Analysis of faint (low-count) x-ray data with Bayesian models
 - Analysis of events in time series
- Each has presented a unique set of challenges

Outline

Introduction

Replacing stacking

Time symmetry 0000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problem

General analysis of faint x-ray sources

Time symmetry 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Problem

General analysis of faint x-ray sources

 In multiwavelength x-ray studies, astronomers identify potential sources using catalogs in one waveband (typically optical or infrared) and observe the selected sources in x-rays.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Problem

General analysis of faint x-ray sources

- In multiwavelength x-ray studies, astronomers identify potential sources using catalogs in one waveband (typically optical or infrared) and observe the selected sources in x-rays.
- This frequently leads to a sample containing many faint, undetected sources.

Time symmetry 0000000

Problem

General analysis of faint x-ray sources

- In multiwavelength x-ray studies, astronomers identify potential sources using catalogs in one waveband (typically optical or infrared) and observe the selected sources in x-rays.
- This frequently leads to a sample containing many faint, undetected sources.
- We want to combine information from these undetected sources to make inferences about our selected sample.

Current method

Current method: stacking

- Based on background subtraction
- For source *i*, observe *c*_{*s*,*i*} counts in source aperture and *c*_{*b*,*i*} counts in background aperture.
- Calculate net counts as $c_{n,i} = c_{s,i} \frac{A_{s,i}}{A_{b,i}}c_{b,i}$, where $A_{s,i}$ and $A_{b,i}$ are the effective areas for the source and background regions (taking into account exposures), respectively.

Current method

Current method: stacking

- Based on background subtraction
- For source *i*, observe *c*_{*s*,*i*} counts in source aperture and *c*_{*b*,*i*} counts in background aperture.
- Calculate net counts as $c_{n,i} = c_{s,i} \frac{A_{s,i}}{A_{b,i}}c_{b,i}$, where $A_{s,i}$ and $A_{b,i}$ are the effective areas for the source and background regions (taking into account exposures), respectively.
- Calculate stacked flux as $\bar{f}_x = \frac{\overline{\text{ECF}}}{\sum_i A_{s,i}} \sum_i c_{n,i}$, where $\overline{\text{ECF}}$ is the mean energy conversion factor.

Current method

Current method: stacking

- Based on background subtraction
- For source *i*, observe *c*_{*s*,*i*} counts in source aperture and *c*_{*b*,*i*} counts in background aperture.
- Calculate net counts as $c_{n,i} = c_{s,i} \frac{A_{s,i}}{A_{b,i}}c_{b,i}$, where $A_{s,i}$ and $A_{b,i}$ are the effective areas for the source and background regions (taking into account exposures), respectively.
- Calculate stacked flux as $\bar{f}_x = \frac{\overline{\mathsf{ECF}}}{\sum_i A_{s,i}} \sum_i c_{n,i}$, where $\overline{\mathsf{ECF}}$ is the mean energy conversion factor.
- Calculate stacked luminosity as $\bar{L_x} = \frac{1}{N} \sum_i \text{LCF}_i c_{n,i}$, where LCF_i is the luminosity conversion factor for source i

• LCF_i =
$$\frac{4\pi d_{\ell,i}^2 \text{ECF}_i \times A_{corr,i} \times K_{corr,i}}{A_{s,i}}$$

Outline

Introduction

Replacing stacking

Time symmetry 0000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Current method

Current method

- Use of background subtraction ⇒ Gaussian assumption; clearly inappropriate here.
- Above manifests as negative net counts; for sufficiently faint samples, can lead to negative stacked fluxes and luminosities.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Current method

- Use of background subtraction ⇒ Gaussian assumption; clearly inappropriate here.
- Above manifests as negative net counts; for sufficiently faint samples, can lead to negative stacked fluxes and luminosities.
- No clean measure of uncertainties on luminosities.

Current method

- Use of background subtraction ⇒ Gaussian assumption; clearly inappropriate here.
- Above manifests as negative net counts; for sufficiently faint samples, can lead to negative stacked fluxes and luminosities.
- No clean measure of uncertainties on luminosities.
- Solution: model data as Poisson

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Model

A hierarchical Bayesian model for "stacking"

Observation Model

- For source *i*, we assume that $c_{n,i} \sim \text{Pois}(\lambda_{n,i})$
- Also assume $c_{b,i} \sim \mathsf{Pois}(\lambda_{b,i} \frac{A_{b,i}}{A_{s,i}})$

• Finally,
$$c_{s,i} - c_{n,i} \sim \mathsf{Pois}(\lambda_{b,i})$$

Model

A hierarchical Bayesian model for "stacking"

Observation Model

- For source *i*, we assume that $c_{n,i} \sim \text{Pois}(\lambda_{n,i})$
- Also assume $c_{b,i} \sim \mathsf{Pois}(\lambda_{b,i} \frac{A_{b,i}}{A_{s,i}})$
- Finally, $c_{s,i} c_{n,i} \sim \mathsf{Pois}(\lambda_{b,i})$

Intensity Model

If redshifts are known, can model luminosities directly & assume L_i ~ Lognormal(μ_L, σ_L) (or L_i ~ Γ(α_L, β_L))

Model

A hierarchical Bayesian model for "stacking"

Observation Model

- For source *i*, we assume that $c_{n,i} \sim \text{Pois}(\lambda_{n,i})$
- Also assume $c_{b,i} \sim \mathsf{Pois}(\lambda_{b,i} \frac{A_{b,i}}{A_{s,i}})$
- Finally, $c_{s,i} c_{n,i} \sim \mathsf{Pois}(\lambda_{b,i})$

Intensity Model

- If redshifts are known, can model luminosities directly & assume L_i ~ Lognormal(μ_L, σ_L) (or L_i ~ Γ(α_L, β_L))
- Otherwise, can apply analogous framework to flux f_i.

Model

A hierarchical Bayesian model for "stacking"

Observation Model

- For source *i*, we assume that $c_{n,i} \sim \text{Pois}(\lambda_{n,i})$
- Also assume $c_{b,i} \sim \mathsf{Pois}(\lambda_{b,i} \frac{A_{b,i}}{A_{s,i}})$
- Finally, $c_{s,i} c_{n,i} \sim \mathsf{Pois}(\lambda_{b,i})$

Intensity Model

- If redshifts are known, can model luminosities directly & assume L_i ~ Lognormal(μ_L, σ_L) (or L_i ~ Γ(α_L, β_L))
- Otherwise, can apply analogous framework to flux f_i.
- Generally assume $\lambda_{b,i} \sim \Gamma(\alpha_b, \beta_b)$

Model

A hierarchical Bayesian model for "stacking"

Observation Model

- For source *i*, we assume that $c_{n,i} \sim \text{Pois}(\lambda_{n,i})$
- Also assume $c_{b,i} \sim \mathsf{Pois}(\lambda_{b,i} \frac{A_{b,i}}{A_{s,i}})$
- Finally, $c_{s,i} c_{n,i} \sim \mathsf{Pois}(\lambda_{b,i})$

Intensity Model

- If redshifts are known, can model luminosities directly & assume L_i ~ Lognormal(μ_L, σ_L) (or L_i ~ Γ(α_L, β_L))
- Otherwise, can apply analogous framework to flux f_i.
- Generally assume $\lambda_{b,i} \sim \Gamma(\alpha_b, \beta_b)$
- Using noninformative priors on hyperparameters (Jefferys)

Outline

Introduction

Replacing stacking

Time symmetry

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Model

A hierarchical Bayesian model for "stacking", continued

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Model

A hierarchical Bayesian model for "stacking", continued

- For luminosity-based inference, assuming that redshifts are known
 - Relatively plausible for spectroscopic; not as much for photometric

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Model

A hierarchical Bayesian model for "stacking", continued

- For luminosity-based inference, assuming that redshifts are known
 - Relatively plausible for spectroscopic; not as much for photometric
- Assuming the spectra of sources are know & identical
 - $\bullet\,$ Typically assume power law with photon index ≈ 1.7

Model

A hierarchical Bayesian model for "stacking", continued

- For luminosity-based inference, assuming that redshifts are known
 - Relatively plausible for spectroscopic; not as much for photometric
- Assuming the spectra of sources are know & identical
 - $\bullet\,$ Typically assume power law with photon index ≈ 1.7
- Attempting to make inferences only on selected sample, for now; not dealing with selection effects, etc.

Outline	Introduction	Replacing stacking ○○○○○●○	Time symmetry 0000000
Model			
INIOUEI			
Computation			

Outline	Introduction	Replacing stacking ○○○○○●○	Time symmetry 0000000
Model			
Computation			

• Using data augmentation algorithm with $\overrightarrow{c_n}$ as missing data

(ロ)、(型)、(E)、(E)、 E) の(の)

• Using data augmentation algorithm with $\overrightarrow{c_n}$ as missing data

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• For Γ hyperdistributions, using Metropolis-Hastings step within Gibbs sampler to draw α & β

Outline	Introduction	Replacing stacking ○○○○○●○	Time symmetry 0000000
Model			
Computation			

- Using data augmentation algorithm with $\overrightarrow{c_n}$ as missing data
- For Γ hyperdistributions, using Metropolis-Hastings step within Gibbs sampler to draw α & β
- For Lognormal hyperdistribution, using Gibbs step to draw μ_L & σ_L ; Metropolis-Hastings step used to draw $\overrightarrow{\lambda_n}$

Outline	Introduction	Replacing stacking ○○○○○●○	Time symmetry 0000000
Model			
Computa	tion		

- Using data augmentation algorithm with $\overrightarrow{c_n}$ as missing data
- For Γ hyperdistributions, using Metropolis-Hastings step within Gibbs sampler to draw α & β
- For Lognormal hyperdistribution, using Gibbs step to draw μ_L & σ_L ; Metropolis-Hastings step used to draw $\overrightarrow{\lambda_n}$
 - MH step here is very efficient; using Haley's method to identify posterior modes in parallel and tune proposal distribution.

Outline	Introduction	Replacing stacking ○○○○○●○	Time symmetry
Model			
Computat	ion		

- Using data augmentation algorithm with $\overrightarrow{c_n}$ as missing data
- For Γ hyperdistributions, using Metropolis-Hastings step within Gibbs sampler to draw α & β
- For Lognormal hyperdistribution, using Gibbs step to draw μ_L & σ_L ; Metropolis-Hastings step used to draw $\overrightarrow{\lambda_n}$
 - MH step here is very efficient; using Haley's method to identify posterior modes in parallel and tune proposal distribution.
- From posterior simulations, can retain posterior mean & standard deviation of each source flux (and luminosity, if available) in addition to hyperparameter samples.
- This provides a great deal of information that is not available with conventional stacking in addition to estimates of sample properties with uncertainties.

Introduction

Replacing stacking

Time symmetry 0000000

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Further development

Further development

Potential directions for further work

• Currently have a very fast method that requires no more data than conventional stacking (and makes few additional assumptions).

Further development

- Currently have a very fast method that requires no more data than conventional stacking (and makes few additional assumptions).
- Room for improvement in some areas:
 - Explicit handling of the PSF

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Further development

- Currently have a very fast method that requires no more data than conventional stacking (and makes few additional assumptions).
- Room for improvement in some areas:
 - Explicit handling of the PSF
 - Incorporation of spectral uncertainties

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Further development

- Currently have a very fast method that requires no more data than conventional stacking (and makes few additional assumptions).
- Room for improvement in some areas:
 - Explicit handling of the PSF
 - Incorporation of spectral uncertainties
 - Incorporation of photometric redshift uncertainties

Time symmetry

Problem

Testing time symmetry for astronomical events

 We have a set of x-ray light curves like the above, each of which is believed to contain an event (in this case, an occultation).

イロト イポト イヨト イヨト

Introduction

Replacing stacking

Time symmetry

Problem

Testing time symmetry for astronomical events

- We have a set of x-ray light curves like the above, each of which is believed to contain an event (in this case, an occultation).
- Interested in testing if the event (a dimming, in this case) is time-symmetric.

Time symmetry

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem

Testing time symmetry for astronomical events

• Even for the Gaussian case, this is not entirely straightforward.

Time symmetry

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Problem

Testing time symmetry for astronomical events

- Even for the Gaussian case, this is not entirely straightforward.
 - Question of how much structure to place on shape of event.
 - Taking maximum over possible centers of event for less structured approach ⇒ complex distribution of test statistic.

Time symmetry

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Problem

Testing time symmetry for astronomical events

- Even for the Gaussian case, this is not entirely straightforward.
 - Question of how much structure to place on shape of event.
 - Taking maximum over possible centers of event for less structured approach ⇒ complex distribution of test statistic.
- With Poisson data, we really need a structured model.

• Define λ_t to be the intensity (count-rate) of our source at time t

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline	Introduction	Replacing stacking	Time symmetry ○○●0000
Model			
Intensity	model		

- Define λ_t to be the intensity (count-rate) of our source at time t
- We model λ_t as:

$$\lambda_t = c - \alpha g(t; \tau, \theta)$$

(日) (日) (日) (日) (日) (日) (日) (日)

where $\lim_{t\to\infty} g(t;\tau,\theta) = \lim_{t\to-\infty} g(t;\tau,\theta) = 0$ and $\sup_{\mathbb{R}} g(t;\tau,\theta) = g(\tau;\tau,\theta) = 1$

Outline	Introduction	Replacing stacking	Time symmetry ○○●0000
Model			
Intensity	model		

- Define λ_t to be the intensity (count-rate) of our source at time t
- We model λ_t as:

$$\lambda_t = c - \alpha g(t; \tau, \theta)$$

where $\lim_{t\to\infty} g(t;\tau,\theta) = \lim_{t\to-\infty} g(t;\tau,\theta) = 0$ and $\sup_{\mathbb{R}} g(t;\tau,\theta) = g(\tau;\tau,\theta) = 1$

• Thus, c characterizes our baseline source intensity, α characterizes the extent of the deviation from this baseline during the event, and $g(t; \tau, \theta)$ characterizes the shape of the event itself.

 Given our series of intensities λ_t, we then model the observed counts at time t as:

$$n_t \sim \mathsf{Pois}(\lambda_t)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Given our series of intensities λ_t, we then model the observed counts at time t as:

$$n_t \sim \mathsf{Pois}(\lambda_t)$$

• This approach generalizes easily to the high count regime with only minor modifications.

Outline	Introduction	Replacing stacking 0000000	Time symmetry
Model			
Testing			

- We can then test the hypothesis of time symmetry by placing the appropriate restrictions on θ and calculating a likelihood-ratio test statistic.
- The challenge is then to find a parsimonious yet flexible form for the "event profile" g(t; τ, θ).

Outline	Introduction	Replacing stacking 0000000	Time symmetry ○○○○●○○
Model			
Testing			

- We can then test the hypothesis of time symmetry by placing the appropriate restrictions on θ and calculating a likelihood-ratio test statistic.
- The challenge is then to find a parsimonious yet flexible form for the "event profile" $g(t; \tau, \theta)$.
- One possibility: a "bilogistic" event profile

$$g(t; au, h_1, h_2, k_1, k_2) = rac{1 + e^{rac{-h_t}{k_t}}}{1 + e^{rac{|t - au| - h_t}{k_t}}} \ h_t = egin{cases} h_1 & t < au \ h_2 & t \ge au \ k_t = egin{cases} k_1 & t < au \ k_2 & t \ge au \ k_2 & t \ge au \end{cases}$$

Outline	Introduction	Replacing stacking 0000000	Time symmetry ○○○○●○○
Model			
Testing			

- We can then test the hypothesis of time symmetry by placing the appropriate restrictions on θ and calculating a likelihood-ratio test statistic.
- The challenge is then to find a parsimonious yet flexible form for the "event profile" $g(t; \tau, \theta)$.
- One possibility: a "bilogistic" event profile

$$g(t; au, h_1, h_2, k_1, k_2) = rac{1 + e^{rac{-h_t}{k_t}}}{1 + e^{rac{|t - au| - h_t}{k_t}}} \ h_t = egin{cases} h_1 & t < au \ h_2 & t \ge au \ k_t = egin{cases} k_1 & t < au \ k_2 & t \ge au \ k_2 & t \ge au \end{cases}$$

• Can also use Gaussian profile for event; tradeoff between degrees of freedom to characterize event and computational requirements.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Model

Testing, continued

- Can also use Gaussian profile for event; tradeoff between degrees of freedom to characterize event and computational requirements.
- Because data is non-Gaussian, still need to simulate under null hypothesis to obtain actual distribution of test statistic (cannot necessarily rely on χ^2 approximation).

0			
•	 + 1	n	

Introduction

Replacing stacking

Time symmetry ○○○○○●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Computational approach

Maximizing the likelihood

• Another challenge: maximizing the likelihood for this model

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Computational approach

- Another challenge: maximizing the likelihood for this model
- It is very multimodal (lots of small, annoying, local maxima)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Computational approach

- Another challenge: maximizing the likelihood for this model
- It is very multimodal (lots of small, annoying, local maxima)
- The good news: only the location parameter τ is truly troublesome

Computational approach

- Another challenge: maximizing the likelihood for this model
- It is very multimodal (lots of small, annoying, local maxima)
- The good news: only the location parameter τ is truly troublesome
- A solution:
 - Randomly draw a set of starting values for τ (possibly based on scan statistics or another simple method).
 - For each starting value, run a fast, local optimization algorithm (such as Gauss-Newton) until convergence.
 - Take the maximum of the values given by the local algorithms.

Computational approach

- Another challenge: maximizing the likelihood for this model
- It is very multimodal (lots of small, annoying, local maxima)
- The good news: only the location parameter τ is truly troublesome
- A solution:
 - Randomly draw a set of starting values for τ (possibly based on scan statistics or another simple method).
 - For each starting value, run a fast, local optimization algorithm (such as Gauss-Newton) until convergence.
 - **③** Take the maximum of the values given by the local algorithms.
- This approach parallelizes extremely well, making it ideal for use in a cluster environment (such as Odyssey).