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Introduction

Recent projects have focused on two areas:

Analysis of faint (low-count) x-ray data with Bayesian models
Analysis of events in time series

Each has presented a unique set of challenges
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Problem

General analysis of faint x-ray sources

In multiwavelength x-ray studies, astronomers identify
potential sources using catalogs in one waveband (typically
optical or infrared) and observe the selected sources in x-rays.

This frequently leads to a sample containing many faint,
undetected sources.

We want to combine information from these undetected
sources to make inferences about our selected sample.
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Current method

Current method: stacking

Based on background subtraction

For source i , observe cs,i counts in source aperture and cb,i

counts in background aperture.

Calculate net counts as cn,i = cs,i −
As,i

Ab,i
cb,i , where As,i and

Ab,i are the effective areas for the source and background
regions (taking into account exposures), respectively.

Calculate stacked flux as f̄x = ECFP
i As,i

∑
i cn,i , where ECF is

the mean energy conversion factor.

Calculate stacked luminosity as L̄x = 1
N

∑
i LCFicn,i , where

LCFi is the luminosity conversion factor for source i

LCFi =
4πd2

`,iECFi×Acorr,i×Kcorr,i

As,i
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Current method

Problems with conventional stacking

Use of background subtraction ⇒ Gaussian assumption;
clearly inappropriate here.

Above manifests as negative net counts; for sufficiently faint
samples, can lead to negative stacked fluxes and luminosities.

No clean measure of uncertainties on luminosities.

Solution: model data as Poisson
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Model

A hierarchical Bayesian model for “stacking”

Observation Model

For source i , we assume that cn,i ∼ Pois(λn,i )

Also assume cb,i ∼ Pois(λb,i
Ab,i

As,i
)

Finally, cs,i − cn,i ∼ Pois(λb,i )

Intensity Model

If redshifts are known, can model luminosities directly &
assume Li ∼ Lognormal(µL, σL) (or Li ∼ Γ(αL, βL))

Otherwise, can apply analogous framework to flux fi .

Generally assume λb,i ∼ Γ(αb, βb)

Using noninformative priors on hyperparameters (Jefferys)
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Model

A hierarchical Bayesian model for “stacking”, continued

Key assumptions

For luminosity-based inference, assuming that redshifts are
known

Relatively plausible for spectroscopic; not as much for
photometric

Assuming the spectra of sources are know & identical

Typically assume power law with photon index ≈ 1.7

Attempting to make inferences only on selected sample, for
now; not dealing with selection effects, etc.
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Model

Computation

Using data augmentation algorithm with −→cn as missing data

For Γ hyperdistributions, using Metropolis-Hastings step
within Gibbs sampler to draw α & β

For Lognormal hyperdistribution, using Gibbs step to draw µL

& σL; Metropolis-Hastings step used to draw
−→
λn

MH step here is very efficient; using Haley’s method to identify
posterior modes in parallel and tune proposal distribution.

From posterior simulations, can retain posterior mean &
standard deviation of each source flux (and luminosity, if
available) in addition to hyperparameter samples.

This provides a great deal of information that is not available
with conventional stacking in addition to estimates of sample
properties with uncertainties.
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Further development

Potential directions for further work

Currently have a very fast method that requires no more data
than conventional stacking (and makes few additional
assumptions).

Room for improvement in some areas:

Explicit handling of the PSF
Incorporation of spectral uncertainties
Incorporation of photometric redshift uncertainties
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Problem

Testing time symmetry for astronomical events

We have a set of x-ray light curves like the above, each of
which is believed to contain an event (in this case, an
occultation).

Interested in testing if the event (a dimming, in this case) is
time-symmetric.
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Problem

Testing time symmetry for astronomical events

Even for the Gaussian case, this is not entirely
straightforward.

Question of how much structure to place on shape of event.
Taking maximum over possible centers of event for less
structured approach ⇒ complex distribution of test statistic.

With Poisson data, we really need a structured model.
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Model

Intensity model

Define λt to be the intensity (count-rate) of our source at
time t

We model λt as:

λt = c − αg(t; τ, θ)

where limt→∞ g(t; τ, θ) = limt→−∞ g(t; τ, θ) = 0 and
supR g(t; τ, θ) = g(τ ; τ, θ) = 1

Thus, c characterizes our baseline source intensity, α
characterizes the extent of the deviation from this baseline
during the event, and g(t; τ, θ) characterizes the shape of the
event itself.
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Model

Observation model

Given our series of intensities λt , we then model the observed
counts at time t as:

nt ∼ Pois (λt)

This approach generalizes easily to the high count regime with
only minor modifications.
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Model

Testing

We can then test the hypothesis of time symmetry by placing
the appropriate restrictions on θ and calculating a
likelihood-ratio test statistic.

The challenge is then to find a parsimonious yet flexible form
for the “event profile” g(t; τ, θ).

One possibility: a “bilogistic” event profile

g(t; τ, h1, h2, k1, k2) =
1 + e

−ht
kt

1 + e
|t−τ |−ht

kt

ht =

{
h1 t < τ
h2 t ≥ τ

kt =

{
k1 t < τ
k2 t ≥ τ



Outline Introduction Replacing stacking Time symmetry

Model

Testing

We can then test the hypothesis of time symmetry by placing
the appropriate restrictions on θ and calculating a
likelihood-ratio test statistic.

The challenge is then to find a parsimonious yet flexible form
for the “event profile” g(t; τ, θ).

One possibility: a “bilogistic” event profile

g(t; τ, h1, h2, k1, k2) =
1 + e

−ht
kt

1 + e
|t−τ |−ht

kt

ht =

{
h1 t < τ
h2 t ≥ τ

kt =

{
k1 t < τ
k2 t ≥ τ



Outline Introduction Replacing stacking Time symmetry

Model

Testing

We can then test the hypothesis of time symmetry by placing
the appropriate restrictions on θ and calculating a
likelihood-ratio test statistic.

The challenge is then to find a parsimonious yet flexible form
for the “event profile” g(t; τ, θ).

One possibility: a “bilogistic” event profile

g(t; τ, h1, h2, k1, k2) =
1 + e

−ht
kt

1 + e
|t−τ |−ht

kt

ht =

{
h1 t < τ
h2 t ≥ τ

kt =

{
k1 t < τ
k2 t ≥ τ



Outline Introduction Replacing stacking Time symmetry

Model

Testing, continued

Can also use Gaussian profile for event; tradeoff between
degrees of freedom to characterize event and computational
requirements.

Because data is non-Gaussian, still need to simulate under null
hypothesis to obtain actual distribution of test statistic
(cannot necessarily rely on χ2 approximation).
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Computational approach

Maximizing the likelihood

Another challenge: maximizing the likelihood for this model

It is very multimodal (lots of small, annoying, local maxima)

The good news: only the location parameter τ is truly
troublesome

A solution:
1 Randomly draw a set of starting values for τ (possibly based

on scan statistics or another simple method).
2 For each starting value, run a fast, local optimization

algorithm (such as Gauss-Newton) until convergence.
3 Take the maximum of the values given by the local algorithms.

This approach parallelizes extremely well, making it ideal for
use in a cluster environment (such as Odyssey).
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