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|
Calibration Concordance Problem (Example: E0102)

@ Supernova remnant E0102

@ Four sources correspond to four spectral lines in E0102
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@ Four spectral lines observed with 11 X-ray detectors

@ Main challenge — the data/instruments do not agree
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Introduction

Notation

@ NN Instruments with true effective area A;, 1 < i < N.

e For each instrument i, we know estimated a; (& A;) but not A;.
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Introduction

Notation

@ NN Instruments with true effective area A;, 1 < i < N.

e For each instrument i, we know estimated a; (& A;) but not A;.
@ M Sources with fluxes Fj, 1 < j < M.

o For each source j, F;j is unknown.
@ Photon counts cj: from measuring flux F; with instrument /.
@ Lower cases: data / estimators.

@ Upper cases: parameter / estimand.
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Introduction

Calibration Concordance Problem

@ Astronomers' Dilemma:

Cii  Cu: o
i#'—ufor/#/'.

a; aj’

Different instruments give different estimated flux of the same object!
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Introduction

Calibration Concordance Problem

@ Astronomers’ Dilemma:
Cii Cir: o
AL fori £
aj aj’

Different instruments give different estimated flux of the same object!

@ Scientific Question:
o Are there systematic errors in ‘known’ effective areas?
o Can we derive properly adjusted effective areas?

e Can we unify estimates of the same flux with different instruments?
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Scientific and Statistical Models

@ Scientific and Statistical Models
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Scientific and Statistical Models

Scientific Model
Multiplicative in original scale and additive on the log scale.

Counts = Exposure x Effective Area x Flux,
Cj = TjAiFj, < log(Cyj =B+ G,

where log area = B; = log A;, log flux = G; = log F;; let Tj; = 1.
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Scientific and Statistical Models

Scientific Model
Multiplicative in original scale and additive on the log scale.

Counts = Exposure x Effective Area x Flux,
C,'j = T,'J'A,'Fj, = |Og C,'j = B; + Gj,

where log area = B; = log A;, log flux = G; = log F;; let Tj; = 1.

Statistical Model
ind.
log counts y;; = logcjj — ajj = B; + Gj + €, ej P N(O,a,-zj);
where ajj = —0.50,-2j to ensure E(c;j) = Cj = AiF;.

e Known Variances: o/; known.

@ Unknown Variances: o;; = o; unknown.
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Bayesian Hierarchical Model

© Bayesian Hierarchical Model
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Bayesian Hierarchical Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

. indep . L .
log counts |area & flux &variance ~~" Gaussian distribution,

ind
vi | Bi, G, o2 "SP N (Bi+ G, o?),
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Bayesian Hierarchical Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

indep
~Y

log counts |area &flux &variance Gaussian distribution,

ind
Yij ’ Bia Gj7 01'2 mr\?p N(BI+@a 01'2)7

ind

B; P N(bi7 7—1'2)7
ind

G; "SSP flat prior,
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Bayesian Hierarchical Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area & flux &variance
yii | Bi, Gj, 01‘2

B

Gj

2

If variance unknown: o7

Setting the prior parameters.

indep
Y
indep
~Y
indep
Yy
indep
v

indep
~J

Q b; = logaj, 7; are given by astronomers.

X-L Meng Calibration Concordance

Gaussian distribution,
N(B,’ + Gj, U,-2),
N(bi7 7—1'2)7

flat prior,
Inv-Gamma(dfg, Bg).
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Bayesian Hierarchical Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area & flux &variance
yii | Bi, Gj, 01‘2

B

Gj

If variance unknown: ¢?

Setting the prior parameters.

indep
Y
indep
~Y
indep
Yy
indep
v

indep
~J

Q b; = logaj, 7; are given by astronomers.

Gaussian distribution,
N (B;+ G, ).
N(b;, 7),

flat prior,

Inv-Gamma(dfg, Bg).

@ dfg, B¢ are given based on the variability in data.
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Advantages of Our Approach

@ Advantages of Our Approach
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Advantages of Our Approach

@ Intuitive Interpretation: Shrinkage Estimators
@ Adjusted Estimates of Effective Area
© Calibration Concordance

@ Avoiding Pitfalls of Wrong ‘Known Variances’
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Advantages of Our Approach

Shrinkage Estimators: Known Fluxes and Errors

Hierarchical model = Shrinkage estimators

@ weighted averages of evidence from 'Prior’ and evidence from 'Data’).
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Advantages of Our Approach

Shrinkage Estimators: Known Fluxes and Errors

Hierarchical model = Shrinkage estimators
@ weighted averages of evidence from 'Prior’ and evidence from 'Data’).

When fluxes and variances are known,

Original Scale Log-Scale
A =al [(a;q)eg,.z/z}l—wf7 Bi = Wib; + (1 — Wi)(i. - G),
where where
N = 28 > Yi

g = Moz _ /M ] o

Ci. = jcij s f = ijj- G M s Vi M
are geometric means. are arithmatic means.

2

The ‘weights', W; = % represents the direct information in b;

relative to indirect information in fluxes.
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Advantages of Our Approach

Shrinkage Estimators: Known Errors

When fluxes are unknown and variances are known,

B = Wib; + (1L~ W))(7 — G), G =7;-B,

= _ %6 p_SBo? o Ny oo Siyor
where G; = Rt B = 2072,)’:— et Y-j:ﬁ-

In practice, we use MCMC to fit the full model.
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Advantages of Our Approach

Shrinkage Estimators: Known Errors

When fluxes are unknown and variances are known,

B = Wibj + (1- W)(7i. — G), G =3,-B,

ZJ'GJ B D, BU = ijij = Zi}/ija,-_2

where G; = =, ST ,}’: =M YT ST
] e

In practice, we use MCMC to fit the full model.

When fluxes and variances are unknown,

again, we use MCMC to fit the full model.
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Numerical Results (E0102)

Recap: Supernova remnant E0102.

Four sources are four spectral lines in E0102.
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Estimates of B; = log A; (M = 2 each panel)
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@ Adjusted so that default effective area, b; = log a; = 0.
@ 95% posterior intervals (black:7 = 0.05; blue: 7 = 0.025).
@ Some instruments systematically high, others low.
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Numerical Results (XCAL)

XCAL data: Bright active galactic nuclei from the XMM-Newton
cross-calibration sample.

Pileup: Image data are clipped to eliminate the regions affected by
pileup, determined using epatplot.

Three detectors: MOS1, MOS2 and pn.

@ Sources: M=103 (in medium band).
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Numerical Results (XCAL): Calibration Concordance

_315 PKS2155-304 34 3C120
~3.20 -35
-3.25 -36
-330 -37
-335 -38
: J -3.9 E {
-3.40 —40
—345 -41
-3.50 -42
—355 pn MOSI  MOS2 7,—0.025 0.0 43 pn MOSI  MOS2 7,—-0.025 —0.05
_5.50 MS0737.9+7441 55 PKS2155-304
-5.55 -2.30
560 -2.35
—2.40
-5.65
} } -2.45 [
-5.70
-2.50
-5.75 o5
—5.80 —2.60
-5.85 —2.65

pn MOS1 MOS2  7,=0.025 7,=0.05

@ y-axis: G (log flux)

pn MOS1 MOS2  7,=0.025 7,=0.05

@ vertical bars (left 3): mean & 2 s.d. based on observed fluxes
(right 2): 95% our posterior intervals.
@ Calibration Concordance: A single estimate of each flux!
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Benefits of Fitting o2

e Tolerance to model/error model misspecification.
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e Tolerance to model/error model misspecification.
o Pitfalls of assuming ‘known’ variances:

e Overly optimistic ‘known variances’
= overly narrow confidence intervals

= possible false discoveries
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Benefits of Fitting o2

e Tolerance to model/error model misspecification.
o Pitfalls of assuming ‘known’ variances:
e Overly optimistic ‘known variances’
= overly narrow confidence intervals
= possible false discoveries
e ‘known variances’ > true variability

= noninformative results
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Advantages of Our Approach

Benefits of Fitting o?: Example

Simulated Data: Poisson data with N = 10,M =40, B; =1, G; = 3.

B, B, By B, B;
25 25 25 25 25
20 20 20 20 20
15, 15 15 15 15
10, 10 10, 10 10
5 5 5 5 5

0 M 0
0.08 012 016 0.20 0.08 012 0.16 020 0.08 012 016 020 0.08 012 016 0.20 0.08 012 016 020

a a oy ay a5

Histograms: posterior distributions.
Vertical line: true values
Black Curve: Results with ‘known variances’ o2 = 0.12, (= fit)

No cost to fitting o, even when values are known correctly.
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Benefits of Fitting o?: Example

Simulated Data: Poisson data with N =10, M = 40, B; =5, G; = 3.

15 15/ 15 15 15
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Histograms: posterior distributions.

Vertical line: true values

Black Curve: Results with ‘known variances' o2 = 0.12, (> fit)

When ‘known’ o is off, under/over estimate errors in fit.
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© Summary
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Summary

Statistics
@ Multiplicative mean modeling:

log-Normal hierarchical model.
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Summary

Statistics
@ Multiplicative mean modeling:

log-Normal hierarchical model.

@ Shrinkage estimators.
© Bayesian computation: MCMC & STAN.

@ The potential pitfalls of assuming 'known' variances.

Astronomy

© Adjustments of effective areas of each instrument.

v
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Summary

Statistics
@ Multiplicative mean modeling:

log-Normal hierarchical model.

@ Shrinkage estimators.
© Bayesian computation: MCMC & STAN.

@ The potential pitfalls of assuming 'known' variances.

Astronomy

© Adjustments of effective areas of each instrument.

@ Calibration concordance.

v
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