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Calibration Concordance Problem (Example: E0102)

Supernova remnant E0102

Four sources correspond to four spectral lines in E0102
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Calibration Concordance Problem (Example: E0102)

Four spectral lines observed with 11 X-ray detectors

Main challenge – the data/instruments do not agree
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Introduction

Notation

N Instruments with true effective area Ai , 1 ≤ i ≤ N.

For each instrument i , we know estimated ai (≈ Ai ) but not Ai .

M Sources with fluxes Fj , 1 ≤ j ≤ M.

For each source j , Fj is unknown.

Photon counts cij : from measuring flux Fj with instrument i .

Lower cases: data / estimators.

Upper cases: parameter / estimand.
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Introduction

Calibration Concordance Problem

1 Astronomers’ Dilemma:

cij
ai
6=

ci ′j
ai ′

for i 6= i ′.

Different instruments give different estimated flux of the same object!

2 Scientific Question:

Are there systematic errors in ‘known’ effective areas?

Can we derive properly adjusted effective areas?

Can we unify estimates of the same flux with different instruments?
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Scientific and Statistical Models

Scientific and Statistical Models

Scientific Model

Multiplicative in original scale and additive on the log scale.

Counts = Exposure× Effective Area× Flux,

Cij = TijAiFj , ⇔ log Cij = Bi + Gj ,

where log area = Bi = log Ai , log flux = Gj = log Fj ; let Tij = 1.

Statistical Model

log counts yij = log cij − αij = Bi + Gj + eij , eij
indep∼ N (0, σ2

ij);

where αij = −0.5σ2
ij to ensure E (cij) = Cij = AiFj .

Known Variances: σij known.

Unknown Variances: σij = σi unknown.
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Bayesian Hierarchical Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area &flux &variance
indep∼ Gaussian distribution,

yij | Bi , Gj , σ
2
i

indep∼ N
(
Bi + Gj , σ

2
i

)
,

Bi
indep∼ N(bi , τ

2
i ),

Gj
indep∼ flat prior,

If variance unknown: σ2
i

indep∼ Inv-Gamma(dfg , βg ).

Setting the prior parameters.

1 bi = log ai , τi are given by astronomers.

2 dfg , βg are given based on the variability in data.
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Advantages of Our Approach

Advantages of Our Approach

1 Intuitive Interpretation: Shrinkage Estimators

2 Adjusted Estimates of Effective Area

3 Calibration Concordance

4 Avoiding Pitfalls of Wrong ‘Known Variances’
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Advantages of Our Approach

Shrinkage Estimators: Known Fluxes and Errors

Hierarchical model ⇒ Shrinkage estimators

weighted averages of evidence from ’Prior’ and evidence from ’Data’).

When fluxes and variances are known,

Original Scale

Âi = aWi
i

[
(c̃i· f̃

−1)eσ
2
i /2

]1−Wi

,

where

c̃i· =
∏

jc
1/M
ij , f̃ =

∏
j f

1/M
j

are geometric means.

Log-Scale

B̂i = Wibi + (1 −Wi )(ȳi· − Ḡ),

where

Ḡ =

∑
j gj

M
, ȳi· =

∑
j yij

M

are arithmatic means.

The ‘weights’, Wi =
τ−2
i

τ−2
i +Mσ−2

i

, represents the direct information in bi

relative to indirect information in fluxes.
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Advantages of Our Approach

Shrinkage Estimators: Known Errors

When fluxes are unknown and variances are known,

B̂i = Wibi + (1−Wi )(ȳi · − Ḡi ), Ĝj = ȳ·j − B̄,

where Ḡi =
∑

j Ĝj

M , B̄ =
∑

i B̂iσ
−2
i∑

i σ
−2
i

, ȳi · =
∑

j yij
M , ȳ·j =

∑
i yijσ

−2
i∑

i σ
−2
i

.

In practice, we use MCMC to fit the full model.

When fluxes and variances are unknown,

again, we use MCMC to fit the full model.
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Advantages of Our Approach

Numerical Results (E0102)

Recap: Supernova remnant E0102.

Four sources are four spectral lines in E0102.
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Advantages of Our Approach

Estimates of Bi = logAi (M = 2 each panel)

RGS1 MOS1 MOS2 pn ACIS-S3 ACIS-I3 HETG XIS0 XIS1 XIS2 XIS3 XRT-WT XRT-PC
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Adjusted so that default effective area, bi = log ai = 0.
95% posterior intervals (black:τ = 0.05; blue: τ = 0.025).
Some instruments systematically high, others low.
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Advantages of Our Approach

Numerical Results (XCAL)

XCAL data: Bright active galactic nuclei from the XMM-Newton
cross-calibration sample.

Pileup: Image data are clipped to eliminate the regions affected by
pileup, determined using epatplot.

Three detectors: MOS1, MOS2 and pn.

Sources: M=103 (in medium band).
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Advantages of Our Approach

Numerical Results (XCAL): Calibration Concordance

pn MOS1 MOS2 τi =0. 025 τi =0. 05
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y-axis: G (log flux)

vertical bars (left 3): mean ± 2 s.d. based on observed fluxes
(right 2): 95% our posterior intervals.

Calibration Concordance: A single estimate of each flux!
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Advantages of Our Approach

Benefits of Fitting σ2
i

Tolerance to model/error model misspecification.

Pitfalls of assuming ‘known’ variances:

Overly optimistic ‘known variances’

⇒ overly narrow confidence intervals

⇒ possible false discoveries

‘known variances’ ≥ true variability

⇒ noninformative results
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Advantages of Our Approach

Benefits of Fitting σ2
i : Example

Simulated Data: Poisson data with N = 10,M = 40, Bi = 1, Gj = 3.

Histograms: posterior distributions.

Vertical line: true values

Black Curve: Results with ‘known variances’ σ2
i = 0.12, (≈ fit)

No cost to fitting σ, even when values are known correctly.
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Advantages of Our Approach

Benefits of Fitting σ2
i : Example

Simulated Data: Poisson data with N = 10,M = 40, Bi = 5, Gj = 3.

Histograms: posterior distributions.

Vertical line: true values

Black Curve: Results with ‘known variances’ σ2
i = 0.12, (> fit)

When ‘known’ σ is off, under/over estimate errors in fit.
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Summary

Summary

Statistics

1 Multiplicative mean modeling:

log-Normal hierarchical model.

2 Shrinkage estimators.

3 Bayesian computation: MCMC & STAN.

4 The potential pitfalls of assuming ’known’ variances.

Astronomy

1 Adjustments of effective areas of each instrument.

2 Calibration concordance.
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