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Effective area is not that well known
Be aware that your effective area curve (arf) has errors and these errors

affect your analysis. The plot below shows the coverage of a sample of 1000

ACIS-S arfs generated by Drake et al. (2006, 2007) and the default arf (ao)

is in a black line.
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This scatter must be included in the analysis. By devising MCMC algorithms,

we propose Bayesian hierarchical modeling for spectral fitting.

Summarizing the black box of arfs (A)
Do we need to carry this entire sample into the analysis? NO! Principal Com-

ponent Analysis (PCA) reduces dimensionality and summarizes the arf set A
with a small number of principal components (PCs). Let aj={1,...,M} ∈ A
be given arfs by calibration scientists on which we perform PCA.

Scree plot: 8 PCs explain

96% of total variation; 12

PCs explain 99%. No need

for 1000 arfs. We will use

the first 8 PCs (vn) and 8

coefficients (rn) to simulate

arfs. An arf a(j∗) with 8 PCs

is generated via: PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12
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Contribution

a(j∗) = a∗o + δa +

8∑
n=1

enrnvn, en∼N(0, 1) (1)

where a∗o is the supplied default arf, ao is the default arf, ā the mean of ajs,

and δa = ā− ao (Kashyap et al.,2007). The figure below shows simulated

1000 arfs in red lines. The 8 PCs are sufficient to match the arf uncertainty

represented by gray lines.
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Gibbs sampler for fitting spectra
For the best fits and their uncertainties, we simulate the posterior distribu-

tion of parameters of interest θ given photon counts y and an instrument

response a via BLoCXS (van Dyk et al. 2001) that implements MCMC

(Gibbs sampler) for spectral fitting in the Poisson regime. A Gibbs sampler

iterates between these two steps:

Data Augmentation: Y(k)∼p(y|θ(k−1), a)

Draw Parameters: θ(k)∼p(θ|y(k), a)

The posterior distribution offers best fits and uncertainties automatically.

Averaging p(θ|y, a) over A (a set of arfs) provides the posterior of θ given

photon counts y, p(θ|y) that includes calibration uncertainty.

Marginalizing over arfs

p(θ|y) =
∫
A p(θ|y, a)p(a)da = 1

M

∑M
j=1 p(θ|y, aj)

How to marginalize over arfs?
Drake et al (2006, 2007) proposed a strategy [B.0] using standard packages

(e.g., XSPEC) and we propose three algorithms [B.1-B.3] with BLoCXS.

[B.0] tends to be tedious and time consuming depending on the size of the

arf library, whose Bayesian counterpart is [B.1]. To speed up [B.1], we in-

troduce [B.2] by selecting arfs randomly from the arf library. To improve

computational efficiency, we introduce [B.3]. Given the observed spectrum,

[B.0-B.3] work as follows:

[B.0] Fit with XSPEC

Require: M ARFs and spectral fitting engines;

for j = 1, ...,M do
Set a new arf and fit the spectrum, best fit θ̂j.

end for
Compute mean and variance of {θ̂j}j=1,...,M .

Repeat fitting procedures as many times as the size of the arf library instead

of the supplied default arf. Very tedious!!!

[B.1] Fit with Gibbs sampler

Require: M ARFs and Bayesian spectral fitting engines;

Set initial values including priors

for j = 1, ...,M do
repeat

Augment data yk|j given θk−1|j and aj

Draw θk|j from p(θ|yk|j, aj)

until the chain {θk|j} is stable, k = 1, ..., nj.

Drop nb draws of a burn-in period.

end for
Compute mean and variance of {θk|j}j=1,...,M for calibration.

Extra-tedious! The individual gibbs sequence {θk|j} offers a statistical error

that varies depending on arfs. See the plot on the lower right.

[B.2] Fit with randomized arfs

Require: M ARFs and Bayesian spectral fitting engines;

Set initial values including priors

repeat
Choose a(j) randomly among M ARFs.

Augment data yk(j) given θk−1(j−1) and a(j)
Draw θk(j) from p(θ|yk(j), a(j))

until the chain {θk(j)} is stable, k = 1, ..., n.

Drop nb draws of a burn-in period.

Compute mean and variance of {θk(j)}.

Randomizing arfs saves the for loop in [B.1].

[B.3] Fit with PC simulated arfs

Require: PCs (vn), coefficients (rn), and spectral fitting engines;

Set initial values including priors

repeat
Simulate a(j∗) based on PCs. (see eq.(1).)

Augment data yk(j∗) given θk−1(j∗−1) and a(j∗)
Draw θk(j∗) from p(θ|yk(j∗), a(j∗))

until the chain {θk(j∗)} is stable, k = 1, ..., n.

Drop nb draws of a burn-in period.

Compute mean and variance of {θk(j∗)}.

We distinguish (j∗), PC simulation from (j), randomization.

Comparison across algorithms
Results from these algorithms work very similarly as shown below but [B.3]

is most efficient. One histogram of best fits [B.0] and three posterior density

profiles [B.1-B.3] from fitting an absorbed power-law spectrum of photon

index α = 2, column density NH = 1023cm−2, and total counts ∼ 105

are shown. The black bar indicates a best fit±σ̂ only with the default arf.

The widths of posterior densities represent errors including calibration un-

certainty.
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Another absorbed power-law spectrum (α = 1, NH = 1021cm−2, ∼ 105 cnts).
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How many arfs?
PCs and coefficients depend on the arf sample provided by calibration sci-

entists but they indicate that a relatively small number of arfs is sufficient

to incorporate calibration uncertainty instead of thousands.

Law of Total Variance (LTV)
LTV explains the complexity of the error decomposition. A best fit depends

on arfs and its uncertainty has two components, statistical error and cali-

bration error which are not independent. LTV indicates that the calibration

error is dominant with high count data where the statistical error becomes

minuscule. This law also explains that [B.3] of 8 PCs (96% calibration error)

tends to be slightly narrower than other algorithms.

V [θ] = V [E[θ|a]] + E[V [θ|a]]

Behaviors of calibration and statistical errors
Depending on the model used, these two errors may not be separable. In

the plot below, two groups of 15 similar arfs are colored and the histograms

of gibbs sequences are colored according to the arf colors (default arf in

black). The shifting pattern of posteriors does not match between these

two spectra. This figure clearly shows that best fit values change with arfs

and that calibration uncertainty must be incorporated into spectral fitting.

an absorbed

power-law

spectrum
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α = 2,

NH =

1023cm−2,

∼ 105 counts
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Asymptotics of calibration error
In the figure below, the horizontal solid line represents the average uncer-

tainty derived from [B.0] and the dashed lines represent the range in this

uncertainty obtained from 20 simulations (α = 2, NH = 1023cm−2, ∼ 105

counts). Also shown are the results obtained from combining posterior pdfs

by using different numbers of arfs. Dots represent the mean uncertainty and

vertical bars denote errors on the means; in other words, N arfs from 1000

are randomly chosen to get the uncertainty of 1
N

∑
(j) p(θ|y, a(j)) for 200

times, and the means and rms errors of these uncertainties are the dots and

bars. This figure shows that after N≈25, the estimated uncertainty is stabi-

lized and therefore, ∼25 fits with different arfs are sufficient to account for

calibration uncertainty provided that the full posterior pdf on the parameters

is obtained.
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Analyzing Quasar Spectra: α and NH
Best fit and (90% confidence interval or credible region)

Subscripts next to obs id indicate total counts
α

Source id XSPEC BLoCXS [B.3]

obs 3102(2867) 1.892 (1.797, 1.935) 1.812 (1.770, 1.859) 1.813 (1.761, 1.874)

obs 3103(4169) 1.879 (1.851, 1.992) 1.827 (1.778, 1.877) 1.824 (1.767, 1.887)

obs 3104(10728) 1.842 (1.802, 1.886) 1.767 (1.735, 1.801) 1.764 (1.714, 1.815)

NH (1020cm−2)

Source id XSPEC BLoCXS [B.3]

obs 3102(2867) 0.910 (0.000, 1.823) 0.228 (0.041, 0.671) 0.243 (0.042, 0.703)

obs 3103(4169) 1.839 (1.184, 3.510) 1.206 (0.588, 1.867) 1.188 (0.547, 1.872)

obs 3104(10728) 6.026 (5.178, 7.173) 4.363 (3.796, 4.959) 4.326 (3.650, 5.035)

It is important to note that incorporating the arf uncertainty shows wider

intervals than the Bayesian fitting without arf uncertainty.

Summary
We have developed a fast, robust, and general method to incorporate effec-

tive area calibration uncertainties in model fitting of low-resolution spectra.

Because such uncertainties are ignored during spectral fits, the error bars

derived for model parameters are generally underestimated. Incorporating

them directly into spectral analysis with existing analysis packages is not

possible without extensive case-specific simulations, but it is possible to do

so in a generalized manner in a Markov chain Monte Carlo framework. We

describe our implementation of this method here, in the context of recently

codified Chandra effective area uncertainties. We develop our method and

apply it to both simulated as well as actual Chandra ACIS-S data. We

estimate the posterior probability densities of absorbed power-law model pa-

rameters that include the effects of such uncertainties. Overall, a single run

of the Bayesian MCMC spectral fitting algorithm incorporates calibration

uncertainty effectively.
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