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Motivation and Previous Works
X-ray Sources

@ X-ray surveys [1, 4, 2] produce massive X-ray data.

@ The data contain event files of photon arrivals:
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Motivation and Previous Works

X-ray Sources

e X-ray surveys [1, 4, 2] produce massive X-ray data

@ The data contain event files of photon arrivals

{(ti,ei) Hq

@ Want to learn these sources automatically

e Source type classification

e Anomaly detection
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@ Both supervised and unsupervised.
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Motivation and Previous Works

Previous Works

@ Both supervised and unsupervised.
@ One line of work: manual feature selection.

o Requires domain knowledge.
e May require time-consuming pipelines.
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Motivation and Previous Works

Previous works

Property name ~ Description

hard_hm ACIS hard (2.0-7.0 keV) — medium (1.2-2.0 keV) energy
band hardness ratio — basically the ratio between the hard
and medium energy bands

hard_hs ACIS hard (2.0-7.0 keV) — soft (0.5-1.2 keV) energy
band hardness ratio — basically the ratio between the hard
and soft energy bands

hard_ms ACIS medium (1.2-2.0 keV) — soft (0.5-1.2 keV) energy
band hardness ratio — basically the ratio between the
medium and soft energy bands

bb_kt Temperature (kT) of the best-fitting absorbed blackbody
model spectrum to the source region aperture PI spectrum
— temperature of the object estimated by a blackbody
model.

powlaw_gamma Photon index of the best fitting absorbed power-law
model spectrum to the source region aperture

var_prob_sx Intra-observation Gregory—Loredo variability probability
(highest value across all stacked observations) for each
science energy band — variability probability in a single
observation with Gregory—Loredo technique

var_ratio_x The ratio of flux variability mean value to its standard
deviation
var.mean_*
var_s *

®
var_newq-b Proportion of the average of minimum and maximum
count rates (i.c. data points in the light curve) during an

observation relative to the mean count rate
var.max.b + var_min_b
2var_mean b

Figure 1: Features selected in [3].
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Motivation and Previous Works
Previous Works

@ Another line of work: deep learning

o CNN, RNN, etc.
o Requires reconstructed rate function: {r(7;)}Y, where {5}, is a
uniform grid.
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uniform grid.
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o Gregory Loredo algorithm: a full Bayesian approach
o Consider all stepwise light curves up to a certain frequency.
o Uniform Prior + Poisson likelihood.
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Motivation and Previous Works

Previous Works

@ Another line of work: deep learning
o CNN, RNN, etc.
o Requires reconstructed rate function: {r(7;)}Y, where {5}, is a
uniform grid.
@ Rate function reconstruction:
o Naively bins the event file: artifacts due to Poisson arrival.
o Gregory Loredo algorithm: a full Bayesian approach
o Consider all stepwise light curves up to a certain frequency.
o Uniform Prior + Poisson likelihood.
@ Superimpose all proposals weighted by posterior.
o Drawbacks of GL:
@ Resolution limited due to computational complexity.
@ Only reconstructs rate function. Need separate pipeline for learning.
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Motivation and Previous Works

Previous Works

t (s)
Figure 2: Reconstruction by GL algorithm.
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Motivation and Previous Works
Contribution

A learning pipeline that
@ Is fully unsupervised
@ Respects the Poisson nature
@ Has adaptive resolution

@ Is end-to-end: rate function reconstruction + representation learning

Song (Harvard) PPAD October 22, 2024 8/23



Loglikelihood

@ Assume no energy marking for now: {f;}* ,
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Loglikelihood

@ Assume no energy marking for now: {f;}* ,

@ Likelihood for a candidate rate function 7:

likelihood(t1, ..., ty; 1) = (ﬁr(tﬂ) exp <_ /OTr(t)dt> .
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Loglikelihood

@ Assume no energy marking for now: {f;}* ,

@ Likelihood for a candidate rate function 7:
n T
likelihood(t1, ..., ty; 1) = Hr(ti) exp <—/ r(t)dt> .
i=1 0

@ Use negative log likelihood as the loss function.
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Method
Regularization

@ What's the problem with likelihood only?
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@ Need to add "smoothness” regularization
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Method
Regularization

@ What's the problem with likelihood only?
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@ Need to add "smoothness” regularization
@ Total variation penalty:
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Method
Regularization

@ What's the problem with likelihood only?
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@ Need to add "smoothness” regularization
@ Total variation penalty:

VT, W) = o ) (1) = (i)

@ Two TV to guarantee enough coverage.
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Method
Neural representation

@ Naive idea: parametrized basis function

o Limited resolution
o Need domain knowledge
e Optimization
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Method
Neural representation

@ Naive idea: parametrized basis function

o Limited resolution
o Need domain knowledge
e Optimization

@ Neural representation: approximate r with neural network 7.
o Infinite resolution: any input t, r4(t) yields the rate.

@ Use a ResNet with RelLU activation
o Not efficient in learning high frequencies.
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Method
Neural representation

@ Naive idea: parametrized basis function
o Limited resolution
o Need domain knowledge
e Optimization

Neural representation: approximate r with neural network 7.

Infinite resolution: any input t, 74(t) yields the rate.
@ Use a ResNet with RelL U activation
o Not efficient in learning high frequencies.

Positional encoding:
v(t) = [F, sin(ZOnf),cos(Zonf),...,sin(2L_17rf>,cos<2L_17tf>]. (1)

where f =t/T.
o Input ¥(t) to the network: r¢(y(t)).
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Method
Representation learning

@ Rate function reconstruction is complete. Where is the representation?
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Method
Representation learning

@ Rate function reconstruction is complete. Where is the representation?
@ (Unsupervised) representation learning for images: AutoEncoders
Input Output

Latent
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Method
Representation learning

@ Rate function reconstruction is complete. Where is the representation?
@ (Unsupervised) representation learning for images: AutoEncoders
Input Output

L Latent L

@ What's the problem on event files?

e Input has variable length.
o Extremely low SNR
e High variance in information throughput
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Method
Autodecoders

@ Autodecoder: no encoder!

Backpropagate l:

Latents

@ Directly "prepare” latent representations.
@ Learn them together with the neural net.

@ At test time: optimize the new latent.
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PPAD
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PPAD

e j=1,..,M event files, k = ., K energy bins, i =1, ..., njk events.
M
k ik
ﬁtotal(‘,b; {z]}]]\il) = Z (Z <££1]eg)logllkellhood + ATV£$V)> + Abte”t‘cl(é}cent)
j=1 \k=1
G4 ER Wy [T ()
ﬁneg—loglikelihood = —Zlogr(P (r)/(ti,k);z )+/() 7’4, (,)/(t)lz )dt,

£ = [ 2 ) (r(1);20) = 1) (y(312);.20)|

il ) (1) 20) — ré“(v(ti);z@)!],

c“" = 1293,

latent —
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PPAD

Training :¢, {20) }]Ail := arg min Lot (¢; {z7) }]Iﬁl) (2)
‘P;{Zj}jl\i1
Inference :2 := arg min Lora (§; 2). (3)
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Experiments
Data

@ ~ 10° event files from the Chandra Source Catalog [1]
@ Truncated to 8 hours

o Energy bins:

o Soft: 0.5-1.2kV
o Medium: 1.2-2kV
o Hard: 2-7kV
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Experiments

Rate function reconstruction

14368_489: flare 16527_79: dip 12823_136: periodic 13739_3: flat?
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Experiments

Latent space
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Experiments
Prediction Results

Regression Traget MSE R?
hard_ms 0.02 0.87
hard_hm 0.01 0.88
hard_hs 0.02 0.93

Classification Target Accuracy F1 Score

var_index_b > 57 0.92 0.63

source type 0.62 0.25
YSO vs AGN 0.75 0.70

Table 1: Regression/classification performance using learned latent features. All
models use a random forest with 100 trees and default hyperparameters Train-test

split is 0.8 — 0.2 without validation set. SMOTE is applied in classification case to
resolve class imbalance.
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Anomaly detection

Experiments
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Experiments
Future Works

@ Trade-off between reconstruction and representation.
@ Allows sampling and UQ: variational autodecoders.
@ Autoencoders.

@ Invariance w.r.t. phase, total rate, etc.
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Thank you!
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