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The Interplay Between Theory/Models and Data



“Theory” in the Form of Simulations
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Credit: Dalmasso (adapted from Cranmer et al, 2020)

Physics-based simulator as a causal (mechanistic) model that 
encodes the data-generating process , where  are 
internal parameters that determine measurable data 

θ ↦ 𝒟 θ
𝒟





- Are we confident that these regions include the true/
unknown parameter with high probability? 

- Do the sizes of the regions reflect our constraining power?













Predictive Approach Can Be Very Powerful, But 
One Needs to Correct for Bias 

[with Luca Masserano, Tommaso Dorigo, Rafael Izbicki and Mikael Kuusela]
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Source: Dorigo et al 2020.  

Slide credit: Luca Masserano 

[Kieseler et al., July 2021 arXiv:2107.02119]  



Similarly, posteriors do not guarantee coverage of 
internal parameters (often “over-confident”)
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https://arxiv.org/abs/2110.06581

https://arxiv.org/abs/1911.11089


Ex: Coverage of Prediction and Posterior 
Intervals Depends on the Choice of Prior

Likelihood:  

Assume prior:  

⇒ freq coverage  (green curve) for 95% credible set

𝒟 |θ ∼ 𝒩(θ,  σ = 1)

θ ∼ 𝒩(μ = 0, σ = 2)
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Ex: Credible Regions from Neural (NF) Posteriors

14

Blue contours: 95% credible regions from Normalizing Flows 
(overly confident when prior is poorly specified)



So what does this mean for reliable scientific 
inference? 

 
Is there a way we can still take advantage of 

neural posteriors and generative models 
where AI has made real breakthroughs?



[Desiderata]
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Can we have it all? 

Valid inference even for small sample size (e.g. n=1),  
and poorly specified prior. 

  
But higher constraining power if well-specified prior. 

Diagnostics across the entire parameter space. 

* All done by leveraging already existing posterior estimates, or 
ML predictive tools “as is”. 

** Modular procedures with theoretical guarantees.
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General Inference Machinery for LFI

21

arXiv:2107.03920 (to appear in EJS)

LF2I

arXIv:2002.10399  (ICML 2021)

https://arxiv.org/abs/2107.03920
https://arxiv.org/abs/2002.10399


Hypothesis Testing and Confidence Sets

Key ingredients:
data D = {X1, ..., Xn}
a test statistic, such as likelihood ratio statistic �(D; ◊0)
an –-level critical value C◊0,–

Reject the null hypothesis H0 if �(D; ◊0) < C◊0,–

Theorem (Neyman inversion, 1937)
Building a 1 ≠ – confidence set for ◊ is equivalent to testing

H0 : ◊ = ◊0 vs. HA : ◊ ”= ◊0

for ◊0 across the parameter space.

Nic Dalmasso (Carnegie Mellon University) 6 / 1

Image credit: Nic Dalmasso

Slide credit: Nic Dalmasso
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1. Fixed ◊. Find the rejection region for test statistic ⁄.

Ann B. Lee (Carnegie Mellon University) 4 / 10
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2. Repeat for every ◊ in parameter space.

Ann B. Lee (Carnegie Mellon University) 4 / 21
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3. Observe data D = D. Evaluate ⁄(D; ◊).

Ann B. Lee (Carnegie Mellon University) 6 / 10
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4. Construct (1 ≠ –) confidence set for ◊.

Ann B. Lee (Carnegie Mellon University) 6 / 21



Challenges to Computing Frequentist 
Confidence Sets

Inverting hypothesis tests at every parameter  does 
not appear computationally feasible… 

Hence, most (if not all) frequentist confidence sets rely on 
large-sample theory; e.g. assuming that the LRT statistic 
is approximately chi-squared distributed 

However, LF2I framework requires neither large-sample theory 
or MC/bootstrap sampling … 

θ0 ∈ Θ
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E�cient Construction of Finite-Sample Confidence Sets

Rather than running a batch of Monte Carlo simulations for every null

hypothesis ◊ = ◊0 on, e.g., a fine enough grid in �, we can interpolate

across the parameter space using training-based ML algorithms.

Ann B. Lee (Carnegie Mellon University) 5 / 16

LF2I



Our Inference Machinery 



Construct Confidence Set via Neyman Inversion



What Test Statistic?

Originally, we were defining likelihood-based test statistics: 

→ ACORE (approximate LRT)  [Izbicki et al 2013; Cranmer et al 
2015; Dalmasso et al 2020, arXiv:2002.10399] 

→ BFF (approximate Bayes Factor) [Dalmasso et al 2021, 
arXiv:2107.03920; Heinrich 2022, arXiv: 2203.13079] 

Now, we are moving toward test statistics computed from 
posteriors 

→ “WALDO" (modified Wald test statistic) [Masserano et al 
2022, arXiv:2205.15680] 

→ “Bayes-Frequentist sets” [Masserano, Carzon et al 2024-]
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https://arxiv.org/abs/2002.10399
https://arxiv.org/abs/2107.03920
https://arxiv.org/pdf/2203.13079.pdf
https://arxiv.org/abs/2205.15680
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arXiv:2205.15680 (AISTATS 2023)

https://arxiv.org/abs/2205.15680


Center Branch: Estimate Critical Values
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Estimating Critical Values C◊0,–

To control Type I error at level –:

Reject H0 : ◊ = ◊0 when ⁄(D; ◊0) < C◊0,–, where

C◊0,– = arg sup
CœR

Ó
C : PD|◊0 (⁄(D; ◊0) < C) Æ –

Ô
.

Problem: Need to compute PD|◊ (⁄(D; ◊) < C) for every ◊ œ �.

Solution: F⁄|◊(C | ◊) © PD|◊(⁄(D; ◊) < C | ◊) is a conditional CDF, so

we can estimate its –-quantile via quantile regression F
≠1
⁄|◊ (–|◊).

Ann B. Lee (Carnegie Mellon University) 10 / 10



Construct Confidence Set via Neyman Inversion



i
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Are the Constructed Confidence Sets Valid?

Theorem (Validity for any test statistic)
Let CBÕ be the critical value of a level-– test based on the statistic
⁄(D; ◊0). Then, if the quantile regression estimator is consistent,

CBÕ
P≠≠≠≠≠æ

BÕ≠æŒ
C

ú
,

where C
ú is such that

PD|◊(⁄(D; ◊0)) Æ C
ú) = –.

If B
Õ

is large enough, we can construct a confidence set with guaranteed

nominal coverage regardless of the observed sample size n.

Ann B. Lee (Carnegie Mellon University) 9 / 10

NOTE: Regardless of the number of observations n, how well we 
estimate the test statistic, and the choice of prior  πθ
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Right Branch: Assessing Conditional Coverage of „R(D)
How do we check coverage of constructed confidence sets across �?

Note:

‚R(D) =
Ó

◊ œ � | ⁄(D; ◊) Ø ‚C◊,–

Ô

PD|◊
1
◊ œ ‚R(D) | ◊

2
= ED|◊

Ë
I

1
◊ œ ‚R(D)

2
| ◊

È

1 Sample ◊i and data Di ≥ F◊i

2 Construct confidence set ‚R(Di)

3 For {◊i,
‚R(Di)}B

ÕÕ

i=1, regress

Zi := I(◊i œ ‚R(Di)) on ◊i.

How close is the actual coverage to the nominal confidence level 1 ≠ –?

Ann B. Lee (Carnegie Mellon University) 8 / 10

Independent check of coverage 
 across parameter space 



Ex: Diagnostics for Classical “On-Off” Problem 
[Lyons 2008; Cowan et al 2011; Cowan 2012; L. Heinrich 2022]

Simultaneous measurements of two Poisson processes

38

NB is the # of events in the background region (expected background 
count b) 

NS  is the  # of events in the contaminated signal region (expected 
signal count s) 

Unknown parameters:  

signal strength-POI (μ);  scaling factor-NP (𝜈) 

[L. Heinrich 2022] Set hyper-parameters at s=15, b=70, 𝜏=1 ⇒ 

asymptotic regime with profiled values away from the MLE

https://arxiv.org/pdf/2203.13079.pdf
https://arxiv.org/pdf/2203.13079.pdf


Our diagnostic tool can identify regions in parameter 
space with under/over-coverage (95% nominal) 

Left: LRT with profiling; Center: marginalization; Right: chi-square) 
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h-BFF (center top) has closest to 
nominal coverage with the highest 
constraining power (orange hist)



Back to the Problem of Calorimetric Muon 
Energy Measurement… [Masserano et al, AISTATS 2023]
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Source: Dorigo et al 2020.  
Slide credit: Luca Masserano 

[Kieseler et al., July 2021 arXiv:2107.02119]  



41 Slide credit: Luca Masserano 



42 Slide credit: Luca Masserano 

Inputs: 1D energy-sum, 28 features or full calorimeter
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Slide credit: Luca Masserano 

Valid confidence sets?

prediction sets
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Slide credit: Luca Masserano 

Constraining power?



Ex: Credible Regions from Neural (NF) Posteriors
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Blue contours: 95% credible regions from Normalizing Flows 
(overly confident when prior is poorly specified)



Ex: LF2I/Waldo Confidence Sets Derived from the 
Same Neural Posteriors ⇨ Correct Coverage
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Waldo guarantees coverage everywhere, even if the prior poorly 
specified. Well-specified prior ⇨ power (tighter constraints)



New Direction: “LF2I beyond SBI” 
Project with Antonio Riberio and Professor Josh Speagle@UoT  

Infer Properties of Stars in the Milky Way from Low-
Resolution Spectra Using Cross-Matched Catalogs
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Credit: ESA/Hubble

Credit: ESA/Gaia



Kiehl diagram illustrating stellar evolution for 
~500K stars plotted with Gaia satellite data 
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Credit: ESA/Gaia

Laroche and Speagle (2024)



Gaia XP Spectra With Apogee Labels 
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Observables X = low-resolution spectra from GAIA satellite 

Stellar labels  (3: gravitational constant, metallicity [Fe/H], effective 
surface temperature) from cross-matching Gaia/Apogee catalogs. A 
subset (~200 K) of full XP catalog have “good labels” [Laroche & Speagle 
2024]

θ

Credit: ESA/Gaia



Preliminary Results (Red Giant Sequence, [Fe/H]=-1)
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Even w/o prior prob shift, credible 
regions (HPD sets)  have frequentist 
coverage on average but not at fixed  
(typically under-cover where  is low)

θ
π(θ)



Setting 1: train/test distributions the same 

Setting 2: GB-dominated (train on 98% GB) —- inference on MS stars 

Setting 3: MS-dominated (train on 80% MS) —- inference on GB stars

What if the Train/Target Distributions Differ?





Inference for a Sun-like star (no prior prob shift)
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Inference for a Sun-like star (GB-dominated prior)
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Take-Away: LF2I (inverse problem)
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Validity and diagnostics: Credible regions from NDEs do 
not necessarily reflect where the true parameter is  

with LF2I we can “frequentize posteriors” to construct 
locally valid confidence sets for finite number of 
observations (n=1), and run diagnostics 

Prior Independence: nominal coverage regardless of prior 
(well-specified prior => power)



56

LF2I is a fully modular and amortized framework. Compatible 
with any test statistic (likelihoods, LRs, posteriors, etc)

https://github.com/lee-group-cmu/lf2i

https://github.com/lee-group-cmu/lf2i


Take-Away: LF2I (inverse problem)
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Validity and diagnostics: Credible regions from NDEs do 
not necessarily reflect where the true parameter is  

with LF2I we can “frequentize posteriors” to construct 
locally valid confidence sets for finite number of 
observations (n=1), and run diagnostics 

Prior Independence: nominal coverage regardless of prior 
(well-specified prior => power)



Incorporating Uncertainties, Bias in ML Applications

- Many datasets have heteroscedastic uncertainties, missing/censored data, and biased 
subsets where ground truth labels are available (often with higher SNR/less censoring).

- Traditionally, dealing with this has involved “degrading” the training data to match the 
properties of the broader dataset. 

- Can we account for these domain adaptations and perform robust uncertainty 
quantification (UQ) without doing this?

A 2-D projection from a Self-Organizing Map of galaxy data from Speagle et al. (2019) 
showing the mean brightness of sources in the training data (left) and target data (right). 

The training data is generally significantly biased to be much brighter than the target data.

A “node” from the plot 
on the left showing the 
training data (top) 
along with the 
evolution of the 
ground-truth labels as 
a function of brightness 
(bottom). The dramatic 
evolution in labels as a 
function of brightness 
highlights a significant 
potential for biases in 
later applications.

What’s Next? Open Problems

Slide Credit: Josh Speagle and Ashley Villar



Project 1 (SBI): Inference of galaxy star-formation histories from 
spectroscopic/photometric data (labels from simulations)

Work-In-Progress: Incorporating Measurement Errors



Work-In-Progress: Incorporating Measurement Errors

Project 2: Inference of stellar labels from low-resolution spectra 
(partially labeled data from cross-matched catalogs).  

 We can handle selection bias, but need to develop methods to 
incorporate measurement errors from data from the GAIA satellite
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Extra Slides Start Here



Finally, if you are instead interested in calibrated PDs and 
posteriors (consistent with a chosen prior)…

UAI, PMLR (161) 2021

arXiv:2205.14568

https://proceedings.mlr.press/v161/zhao21b/zhao21b.pdf
https://arxiv.org/abs/2205.14568


Taxonomy of Different Types of Simulators 
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Image credit: Kyle Cranmer

Figure credit: Kyle Cranmer



Revolution in simulators and AI generative models 
(GANs, transformers, diffusion models etc) & high-
performance predictive NNs.  

But what about scientific inference? 

Simulators are often poorly suited for the “inverse problem” 
of inferring the causes behind observed phenomena.

65

Simulation/Prediction to Scientific Inference

6

PRED ICT ION

INFERENCE

DataTheory
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3. Observe data D = D. Evaluate ⁄(D; ◊).

Ann B. Lee (Carnegie Mellon University) 6 / 10
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