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The Interplay Between Theory/Models and Data
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"Theory” in the Form of Simulations
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Credit: Dalmasso (adapted from Cranmer et al, 2020)

@ Physics-based simulator as a causal (mechanistic) model that
encodes the data-generating process 0 = &, where @ are
internal parameters that determine measurable data &

3




How Do We Test or Constrain Our Theory/Model Given Data?

“Labeled” data {0, 2} from either

) Simulator implicitly encoding £ (<, 0)
or
i) Observational study with “precise" labels

@ from auxiliary measurements

v

Infer internal parameters/labels of interest
with measures of uncertainty.
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Are we confident that these regions include the true/
unknown parameter with high probability?
Do the sizes of the regions reflect our constraining power?
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Complex Scientific Inference is Often “Likelihood-Free”
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O Suppose we have knowledge of data-generating process 6 —» & e.g. via a “high-fidelity simulation”

----—

O But likelihood is intractable: e.g, p(x | 0) = Jp(x | 2)p(z | @)dz, where 7z are latent variables

O Inference (inverse problem) is hard: given new D = {xl"bs, ...,x,‘jbs}, use {6, Di}?=1 to infer parameters 0*




Complex Scientific Inference is Often “Likelihood-Free”

L(D; 0) Data
Nature Observational Effects

—| gl || —>x=2 »
4

S

~ . Likelihood-Free Inference _ » = *

& e r—— D -
O Suppose we have knowledge of data-generating process 8 —» & e.g. via a “high-fidelity simulation”
O But likelihood is intractable: e.g, p(x | 0) = Jp(x | 2)p(z | @)dz, where 7z are latent variables

---—

O Inference (inverse problem) is hard: given new D = {xl"bs, ...,x,‘,fbs}, use {6, Di}?=1 to infer parameters 0*

O Assumptions in our work regarding the data-generating process:

1. Likelihood Z(92; 0) does not change between training and inference: no unaccounted-for model
uncertainties

2. “Prior” m, (i.e., how we observe train data across the parameter space) could be poorly designed




Complex Scientific Inference is Often “Likelihood-Free”
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Predictive Approach Can Be Very Powerful, But
One Needs to Correct for Bias

[with Luca Masserano, Tommaso Dorigo, Rafael Izbicki and Mikael Kuusela]

Data coming from Dorigo et al. (2020): ~ 400’000
simulated muons with true incoming energy
sampled uniformly between 100 and 2000 GeV.

Energy=655.69965 GeV
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Figure 4: Muon entering the calorimeter in z direction.

[Kieseler et al., July 2021 arXiv:2107.02119]
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Figure 9: 2D histogram of uncorrected
kNN prediction versus true energy for test
data.
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Figure 10: 2D histogram of corrected
kNN prediction versus true energy for test
data.
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Source: Dorigo et al 2020.
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Averting A Crisis In Simulation-Based Inference

Similarly, posteriors do not guarantee coverage of

internal parameters (often “over-confident”)
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Abstract

We present extensive empirical evidence show-
ing that current Bayesian simulation-based
inference algorithms are inadequate for the fal-
sificationist methodology of scientific inquiry.
Our results collected through months of ex-

perimental computations show that all bench-

marked algorithms — (S)NPE, (S)NRE, SNL
and variants of ABC — may produce overconfi-
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dent posterior approximations. which makes

them demonstrably unreliable and dangerous
if one’s scientific goal is to constrain param-

eters of interest. We believe that failing to
address this issue will lead to a well-founded
trust crisis in simulation-based inference. For
this reason, we argue that research efforts
should now consider theoretical and method-
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evaluation requires the often intractable integration of
all stochastic execution paths. In this problem setting,
statistical inference based on the likelihood becomes
impractical. However, approximate inference remains
possible by relying on likelihood-free approximations
thanks to the increasingly accessible and effective suite
of methods and software from the field of simulation-
based inference (Cranmer et al., 2020).

While simulation-based inference targets domain sci-
ences, advances in the field are mainly driven from a
machine learning perspective. The field, therefore, in-
herits the quality assessments (Lueckmann et al., 2021)
customary to the machine learning literature, such as
the minimization of classical divergence criteria. De-
spite recent developments of post hoc diagnostics to
inspect the quality of likelihood-free approximations
(Cranmer et al., 2015; Brehmer et al., 2018, 2019; Her-
mans et al., 2021; Lueckmann et al., 2021; Talts et al.,

https://arxiv.org/abs/2110.06581



https://arxiv.org/abs/1911.11089

Ex: Coverage of Prediction and Posterior
Intervals Depends on the Choice of Prior

@ Likelihood: |0 ~ N (O, 6 = 1)
@ Assume prior: 0 ~ N (u =0, 0 = 2)

= freq coverage (green curve) for 95% credible set
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Ex: Credible Regions from Neural (NF) Posteriors
D|0 ~ 3N (0,1I) + sN(0,0.01 ©I), where @ € R? and n =1

Parameter Reaions Coverage Diaanostics

Credible Region Credible Region Credible Region Diagnostics Credible Regions

—— Posterior Credible Region 95% 100 gps
N(0, 21) Prior Credible Region 95% 75 N

N

e

VVaidu CuUINJeive oct

- Waldo Confidence Set 95%

Blue contours: 95% credible regions from Normalizing Flows
(overly confident when prior is poorly specified)




So what does this mean for reliable scientific
inference?

s there a way we can still take advantage of
neural posteriors and generative models
where Al has made real breakthroughs?




Desiderata

[J Develop LFI procedures with the following properties:

1. Robust coverage guarantees under poorly specified priors or shifting priors

2. Tight constraints when the prior is consistent with D, .
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Desiderata

[J Develop LFI procedures with the following properties:

1. Robust coverage guarantees under poorly specified priors or shifting priors

2. Tight constraints when the prior is consistent with D, .

3. Valid for all @ € ©, and in finite samples (e.g., n = 1 — single observation from 6*)

4. Interpretable diagnostics that checks coverage across the entire parameter space;
local/conditional and not just average/marginal coverage

0 How? Bridge advances in LFl with a principled statistical inference framework:

Py (0 € R D) =1-a, VOO (Local validity)

and E[ | Z(2D) | ] is small for target data  (High constraining power)
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Valid inference even for small sample size (e.g. n=1),
and poorly specitied prior.

But higher constraining power it well-specified prior.

Diagnostics across the entire parameter space.

Ppjg (9 S E(D)) =1-a, V90O
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Valid inference even for small sample size (e.g. n=1),
and poorly specitied prior.

But higher constraining power it well-specified prior.

Diagnostics across the entire parameter space.

Ppjg (9 S E(D)) =1-a, V90O

* All done by leveraging already existing posterior estimates, or
ML predictive tools “as is”.
** Modular procedures with theoretical guarantees.
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Hypothesis Testing and Confidence Sets

Key ingredients:
@ data D = {Xl, ,Xn}
@ a test statistic, such aslikelihood ratio statistic A(D; 6g)

@ an o-level critical value Cyg,

Reject the null hypothesis Hy if A(D;6y) < Cy, .o

Theorem (Neyman inversion, 1937)

Building a 1 — a confidence set for 6 is equivalent to testing

Hy:0=0y vs. Hp:0+# 6

for 8y across the parameter space.

Slide credit: Nic Dalmasso




1. Fixed 6. Find the rejection region for test statistic .

LR(D; 6)




2. Repeat for every 6 in parameter space.




3. Observe data D = D. Evaluate A\(D;#).
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4. Construct (1 — «) confidence set for 6.
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Challenges to Computing Frequentist
Confidence Sets

@ Inverting hypothesis tests at every parameter 6, € © does
not appear computationally feasible...

@ Hence, most (if not all) frequentist confidence sets rely on
large-sample theory; e.g. assuming that the LRT statistic
is approximately chi-squared distributed

However, LF2I framework requires neither large-sample theory
or MC/bootstrap sampling ...



Efficient Construction of Finite-Sample Confidence Sets

LF2I

LR(D; 6)

LR(D; 6)

Rather than running a batch of I\/Io‘, e simulations for every null
hypothesis 6 = 0y on, e.g., a fine enough grid in ©, we can interpolate
across the parameter space using training-based ML algorithms.




Our Inference Machinery

LF2I: Likelihood-Free Frequentist Inference

ﬁrain = {(Hl,Xl) “ e ((93, XB)} ~ W(@),C(X; (9)
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Construct Confidence Set via Neyman Inversion

LF2I: Likelihood-Free Frequentist Inference

ﬁrain = {(Hl,Xl) “ e ((93, XB)} ~ W(@),C(X; (9)
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What Test Statistic?

@ Originally, we were defining likelihood-based test statistics:

@ — ACORE (approximate LRT) [izbicki et al 2013; Cranmer et al
2015; Dalmasso et al 2020, arXiv:2002.10399]

@ — BFF (approximate Bayes Factor) [Dalmasso et al 2021,
SN2 B0 e aricn 20272, clodie 2208, 18107

. )
@ Now, we are moving toward test statistics computed from

posteriors

@ — "WALDO" (modified Wald test statistic) [Masserano et al
2022, arXiv:2205.15680]

@ — "Bayes-Frequentist sets” [Masserano, Carzon et al 2024-]

Gl


https://arxiv.org/abs/2002.10399
https://arxiv.org/abs/2107.03920
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arXiv:2205.15680 (AISTATS 2023)

Simulation-Based Inference with WALDO: Confidence Regions by Leveraging
Prediction Algorithms or Posterior Estimators for Inverse Problems
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= Predictive algorithms, such as deep neural net- Tha vast majority of modern machine learning targets pre-
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f a data-gc;lcrating process with reliable measures of

uncertaintv. The parameters of interest. which we denote by

0 Wald test statistic (1D case): [dJ Waldo test statistic (1D and p-D case):

»

for every 0y € ©.

— certainty quantification, especially when both pa-
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Center Branch: Estimate Critical Values

LF2I: Likelihood-Free Frequentist Inference

Simulator

v

Test Critical Coverage
Statistics Values Diagnostics

A

Hypothesis Confidence
[ Data D ]_' Testing }_’[ Set for 0 }




Estimating Critical Values Cy, ,

To control Type | error at level a: l00(AD)

a

Reject Hy : 0 = 0y when \(D;60y) < Cy, o, Where N\

Ceo, a

Coy,0 = arg sup {C Ppjg, (A(D;0p) < C) < Oz} :

CeR

Problem: Need to compute Ppg (A(D;0) < C) for every 0 € ©.

Solution: Fy4(C | 0) =\Ppg(A(D;0) < C | 8))is a conditional CDF, so
we can estimate its a-quantile via quantile regression )\‘9(049)




Construct Confidence Set via Neyman Inversion

LF2I: Likelihood-Free Frequentist Inference

Simulator
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Are the Constructed Confidence Sets Valid?

Theorem (Validity for any test statistic)

Let Cg be the critical value of a level-o test based on the statistic
A(D;60y). Then, if the quantile regression estimator is consistent,

P

B — 0

Cp

> C™,
where C* is such that

Ppjo(A(D;00)) < C7) =

NOTE: Regardless of the number of observations n, how well we
estimate the test statistic, and the choice of prior 7,
If B' is large enough, we can construct a confidence set with guaranteed
nominal coverage regardless of the observed sample size n.




Right Branch: Assessing Conditional Coverage of R(D)

How do we check coverage of constructed confidence sets across ©7
Note:

R(D)={0c O | \D;0) > Cpa}

Py (9 e R(D) | 9) — Epyg []1 (9 € fz(@)) | 0}

( Proposal j
"0

Smulator @ Sample 0; and data D; ~ Fp,
( )
g, @ Construct confidence set R(D;)
B
ﬁ ; / Q@ For {0;, R(D;)}2 ., regress
iagnostics .
{Cor:f}degce]_| Independent check of coverage

across parameter space
How close is the actual coverage to the nominal confidence level 1 — a7

37
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Ex: Diagnostics for Classical “On-Oft” Problem
[Lyons 2008; Cowan et al 2011; Cowan 2012; L. Heinrich 2022]

@& Simultaneous measurements of two Poisson processes

Observed data X = (IV,, Ny),

where N, ~ Pois(v7bh), Ns; ~ Pois(vb + us)

@ Ngis the # of events in the background region (expected background
count b)

@ Ns is the # of events in the contaminated signal region (expected

signal count s)
@ Unknown parameters:

@ signal strength-POlI (u); scaling factor-NP (v)

o [L. Heinrich 2022] Set hyper-parameters at s=15, b=70, 7=1 =

asymptotic regime with profiled values away from the MLE


https://arxiv.org/pdf/2203.13079.pdf
https://arxiv.org/pdf/2203.13079.pdf

Our diagnostic tool can identify regions in parameter

space with under/over-coverage (95% nominal)
Left: LRT with profiling; Center: marginalization; Right: chi-square)
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Back to the Problem of Calorimetric Muon
Energy Measurement... [Masserano et al, AISTATS 2023]

Data coming from Dorigo et al. (2020): ~ 400’000
simulated muons with true incoming energy
sampled uniformly between 100 and 2000 GeV. 1. Bias

Energy=655.69965 GeV

>
)
1)
E
8

E Pred

e
ETrue [GeV]

Figure 9: 2D histogram of uncorrected Figure 10: 2D histogram of corrected
kNN prediction versus true energy for test kNN prediction versus true energy for test
data. data.

Figure 4: Muon entering the calorimeter in z direction.

[Kieseler et al., July 2021 arXiv:2107.02119] Source: Dorigo et al 2020.
Slide credit;: Luca Masserano

{(917 X1>7 (927 X?)? cee (eBa XB)}? where ¢ ~ T(9)7 X‘H ~ F9




Figure 6: Road transport of a structure for the ATLAS air toroids. Photo reproduced
from Ref. [181].

Can we do frequentist inference for muon energy?

We are mainly interested in two questions:

1. Infer, from the pattern of the energy deposits in the calorimeter, how much energy the incoming
muon had and construct a confidence set for it with proper coverage

- goal: Reconstruct muon properties with rigorous uncertainties for downstream analyses

2. How much added value does a high granularity of the calorimeter cells offer over the 1D and
28D representations?

— goal: devise better and more cost-effective calorimeters for future particle colliders

Slide credit: Luca Masserano



Inputs: 1D energy-sum, 28 features or tull calorimeter

Prediction algorithms used

Three “nested” datasets:
1. One-dimensional energy sum: minimizer of Cross-Validation MSE loss (XGBoost)
2. 27 features + 1D energy sum: minimizer of Cross-Validation MSE loss (XGBoost)
3. Full calorimeter (51200-D) + 28 features: custom CNN (with MSE loss) from Kieseler et al. (2022)

—¥%  We estimate E[@| D] and V[@| D] for each of these. Muon energy is

Slide credit: Luca Masserano




Valid confidence sets?

Confidence sets for muon energy have proper coverage

0 Nominal coverage is achieved regardless of the dataset used
J Prediction sets do not achieve the desired level of coverage

™ Coverage Diagnostics

o
o

orediction sets
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o
FN
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48]
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-== Nominal coverage = 68.3 %
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Slide credit: Luca Masserano




Constraining power?
Valuable information in high-granularity calorimeter

Interval Length

‘--‘-" ‘“‘.""" .’_'
O Intervals are shorter as the data

becomes higher-dimensional

A"’--._.,..-O .-
O Prediction sets can even be larger

than Waldo confidence sets (while

4
4
also not guaranteeing coverage)

4
3

—&— Waldo Energy Sum
Waldo 28 Features

-#- Waldo Full Calorimeter

$
]
3
]
)
: J
3
3
]
]
]
3
.

¢ Prediction Sets Full Calorimeter

1000 2000 3000 4000 5000 6000 7000 8000

True Muon Energy 6 [GeV]

%%
Slide credit: Luca Masserano




Ex: Credible Regions from Neural (NF) Posteriors
D|0 ~ 3N (0,1I) + sN(0,0.01 ©I), where @ € R? and n =1

Parameter Reaions Coverage Diaanostics

Credible Region Credible Region Credible Region Diagnostics Credible Regions
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N(0, 21) Prior Credible Region 95% 75 N
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- Waldo Confidence Set 95%

Blue contours: 95% credible regions from Normalizing Flows
(overly confident when prior is poorly specified)




Ex: LF2I/Waldo Confidence Sets Derived from the
Same Neural Posteriors & Correct Coverage

Parameter Regions Coverage Diagnostics

Credible Region Credible Region Credible Region Diagnostics Credible Regions

—— Posterior Credible Region 95% 10.0 $ A A
75

50 S
25 SR
62 '
00 &8
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N(O, 21) Prior Credible Region 95%

v Ly
- »
75 SO )
)

-
Waldo Confidence Set Waldo Confidence Set Waldo Confidence Set
- Waldo Confidence Set 95%

®

Waldo guarantees coverage everywhere, even if the prior poorly

specified. Well-specified prior & power (tighter constraints) JEurpa- <E[9x|/2[)61|1_>]90)2
16




New Direction: “"LF2| beyond SBI”

Project with Antonio Riberio and Protfessor Josh Speagle@UoT
Infer Properties of Stars in the Milky Way from Low-

Resolution Spectra Using Cross-Matched Catalogs
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Tirain = {(01, X1) ... (B, Xp)} ~7(0)L(x;0)
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Kiehl diagram illustrating stellar evolution for
~500K stars plotted with Gaia satellite data

....

48 Laroche and Speagle (2024)
EGEGE——————EL



Gaia XP Spectra With Apogee Labels

@ Observables X = low-resolution spectra from GAIA satellite

@ Stellar labels 0 (3: gravitational constant, metallicity [Fe/H], effective
surface temperature) from cross-matching Gaia/Apogee catalogs. A
subset (~200 K) of full XP catalog have “good labels” [Laroche & Speagle

LAROCHE & SPEAGLE
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Preliminary Results (Red Giant Sequence, [Fe/H]=-1)

Kiel Diagram: Data Distribution
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@ Even w/o prior prob shift, credible
regions (HPD sets) have frequentist

coverage on average but not at fixed 6

(typically under-cover where 7(0) is low)

LF2I: Likelihood-Free Frequentist Inference
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2: GB-dominated 1: train = target

3: MS-dominated

What if the Train/Target Distributions Differ?

0KieI Diagram: Data Distribution
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,LCoverage Diagnostics: LF2I Sets
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@ Setting 1: train/test distributions the same

@ Setting 2: GB-dominated (train on 98% GB) —- inference on MS stars

@ Setting 3: MS-dominated (train on 80% MS) —- inference on GB stars
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Inference for a Sun-like star (no prior prob shitt)

Teff (K)= 5737 |0g g (dex) =4.40
_Kiel Diagram: Data Distribution [Fe/H] (dex) = 0.01 [a/M] (dex) = 0.032
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Inference for a Sun-like star (GB-dominated prior)

Kiel Diagram: Data Distribution
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Take-Away: LF2I (inverse problem)

@ Validity and diagnostics: Credible regions from NDEs do
not necessarily reflect where the true parameter is

@ with LF2| we can “frequentize posteriors” to construct
locally valid confidence sets for finite number of
observations (n=1), and run diagnostics

55



@ LF2lis a fully modular and amortized framework. Compatible
with any test statistic (likelihoods, LRs, posteriors, etc)

https://github.com/lee-group-cmu/If2i
LF2l: Likelihood-Free Frequentist Inference

7¥rain = {(Ql,Xl) .. (HB,XB)} ~ 7T((9)[,(X; 9)

Simulator
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ALDO O‘D
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HYPOtheSIS Confldence
m Testing [ Set for 6
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https://github.com/lee-group-cmu/lf2i

Take-Away: LF2I (inverse problem)

@ Validity and diagnostics: Credible regions from NDEs do
not necessarily reflect where the true parameter is

@ with LF2| we can “frequentize posteriors” to construct
locally valid confidence sets for finite number of
observations (n=1), and run diagnostics

@ Prior Independence: nominal coverage regardless of prior
(well-specified prior => power)
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What's Next? Open Problems

Incorporating Uncertainties, Bias in ML Applications

Many datasets have heteroscedastic uncertainties, missing/censored data, and biase
subsets where ground truth labels are available (often with higher SNR/less censoring
Traditionally, dealing with this has involved “degrading” the training data to match the
properties of the broader dataset.

Can we account for these domain adaptations and perform robust uncertainty
quantification (UQ) without doing this? NofeiiSE, 25}

=
wn

A “node” from the plot
on the left showing the
training data (top)
g along with the
5000 6000 7000 8000 9000 10000  Evolution of the
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e lil v . (bottom). The dramatic
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A 2-D projection from a Self-Organizing Map of galaxy data from Speagle et al. (2019) 0.00 L TR : SN potential for biases in
showing the mean brightness of sources in the training data (left) and target data (right). B2 and vagnitge 0 °® later applications.
The training data is generally significantly biased to be much brighter than the target data.

Flux Density
[normalized]
=
o

w
o

N
o

i-band mag (train)
X1
i-band mag (source)

=
o

o

0 10 20 30 40 50 0 10 20 30 40

Slide Credit: Josh Speagle and Ashley Villar




Work-In-Progress: Incorporating Measurement Errors

@ Project 1 (SBI): Inference of galaxy star-formation histories from
spectroscopic/photometric data (labels from simulations)

Observed Wavelength (A)




Work-In-Progress: Incorporating Measurement Errors

@ Project 2: Inference of stellar labels from low-resolution spectra
(partially labeled data from cross-matched catalogs).

@ We can handle selection bias, but need to develop methods to
incorporate measurement errors from data from the GAIA satellite

4 LAROCHE & SPEAGLE
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Finally, if you are instead interested in calibrated PDs and
posteriors (consistent with a chosen prior)...

Diagnostics for Conditional Density Models and Bayesian Inference Algorithms

UAI, PMLR (161) 2021

David Zhao! Niccolo Dalmasso! Rafael Izbicki? Ann B. Lee!

'Department of Statistics & Data Science, Carnegie Mellon University, Pittsbureh Pennsvlvania TISA
ZDepartment of Statistics, Federal University of Sdo Carlos (UFSCar), S Definition 1 (Global Consistency). An estimate J/c\(y‘ X) is
globally consistent with the density f(y|x) if the following
null hypothesis holds:

Hy : f(y|x) = f(y|x) foreveryx € X andy € Y. (1)
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where 77 is the regression estimator of the PIT-CDF (Equation 4). ) y

(b) Cal-PIT by Mapping Probabilities
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Taxonomy ot Different Types of Simulators
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Simulation/Prediction to Scientific Inference

@ Revolution in simulators and Al generative models
(GANSs, transformers, difftusion models etc) & high-
performance predictive NNs.

@ But what about scientific inference?

@ Simulators are often poorly suited for the “inverse problem”
of inferring the causes behind observed phenomena.

PREDICTION

Theory

INFERENCE




Recent Developments in LFI are Mainly Driven by ML

(J Leverage ML algorithms to directly estimate key inferential quantities from simulated data

{(6,,9)), ...,(05,Dp)}, where 0 ~ my(-), D0 ~ Z(0;-)
» Parameters 0 (inference via point predictions) [e.0., Kieseler
» Posteriors p(@| D) [e.g., Papamakarios

v

Likelihoods p(D | 0)
Likelihoods ratios p(D | 6,)/p(D | 6,)

v




Recent Developments in LFI are Mainly Driven by ML

(J Leverage ML algorithms to directly estimate key inferential quantities from simulated data

(61, D), ..., (05, D)}, Where 0 ~ ny(+), D0 ~ ZL©;-)
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[J These approaches can handle complex, unstructured and high-dimensional data and
approximate complicated distributions without prior dimension reduction
d Some of them also provide amortized inference (train once, evaluate on many observations)




What is Missing? — Trustworthy UQ for Inverse Problems

[ Do ML methods provide reliable constraints for internal parameters of interest?

Prediction algorithms

Actual Coverage

Posterior estimators
NPE SNL SMC-ABC

Nominal Coverage



What is Missing? — Trustworthy UQ for Inverse Problems

[ Do ML methods provide reliable constraints for internal parameters of interest?

Prediction algorithms Posterior estimators
NPE SNL SMC-ABC

Actual Coverage

Nominal Coverage

Problems:

J ML training vs. Scientific Evaluation criteria: should target trustworthy uncertainty quantification,

not exactness of an approximation
[J Most ML methods target prediction, rather than inference in @ — < problems

] Training data sampled from prior @ ~ 7, — possibly harmful bias if not consistent with D,




1. Fixed 6. Find the rejection region for test statistic .

LR(D; 6)




2. Repeat for every 6 in parameter space.




3. Observe data D = D. Evaluate A\(D;#).
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4. Construct (1 — «) confidence set for 6.
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Masserano, Dorigo, Izbicki, Kuusela, Lee (AISTATS 2023)

J Goal: move away from likelihood-based test statistics. Why?

» Large arsenal of Al tools for prediction and NPEs. (LR trick +
maximization/integration over many parameters sometimes hard
| L2 to implement in practice — loss of power)

» LR approaches do not benefit from good priors.

Test
Statistics




Masserano, Dorigo, Izbicki, Kuusela, Lee (AISTATS 2023)

J Goal: move away from likelihood-based test statistics. Why?
» Large arsenal of Al tools for prediction and NPEs. (LR trick +

_ maximization/integration over many parameters sometimes hard
| L2 to implement in practice — loss of power)
o » LR approaches do not benefit from good priors.
g I
J From Wald to Waldo test statistic
OMLE _ g.)? E[6| 2] - 6,)*
Test tWald(; 6,) = ( 0 -  gWaldo(g.0.) = (EL012] - &)
Statistics V[OMLE] V[0 | D]

3 In practice:
> Posterior: normalizing flows, diffusion models, etc...
Approximate E[@| D] and V[0 | D] by sampling from posterior

> Prediction: under squared error loss, predictions yield E[@ | 2].
Then let, e.g., V[0| D] = E[(0 — E[0]| 2])*| 2]



Masserano, Dorigo, Izbicki, Kuusela, Lee (AISTATS 2023)

J Goal: move away from likelihood-based test statistics. Why?
» Large arsenal of Al tools for prediction and NPEs. (LR trick +

_ maximization/integration over many parameters sometimes hard
| L2 to implement in practice — loss of power)
o » LR approaches do not benefit from good priors.
g I
J From Wald to Waldo test statistic
OMLE _ g.)? E[6| 2] - 6,)*
Test tWald(; 6,) = ( 0 -  gWaldo(g.0.) = (EL012] - &)
Statistics V[OMLE] V[0 | D]

3 In practice:
> Posterior: normalizing flows, diffusion models, etc...
Approximate E[@| D] and V[0 | D] by sampling from posterior
> Prediction: under squared error loss, predictions yield E[@ | 2].
Then let, e.g., V[0 | D] = E[(§ — E[0]| 2])* | D]
[ Quality of the prediction algorithm or posterior estimator only influences power
[J With generative models, obtain frequentist guarantees with Bayesian posteriors




Provably optimal confidence sets from arbitrary posteriors

3 Waldo suffers from a key shortcoming: it cannot handle 2 o o
multimodal posteriors

[J Possible solution: use p(@ | X) directly as a test statistic.
Neural density estimators allow to directly evaluate the
posterior probability %1000

[J Possibly disjoint confidence sets of minimum average size:

Theorem (Informal). Let Z(X) = {0 : h(0,7(X;0)) > a}, where W
h(X; 0) is the p-value for the test statistic 7(X;0) = p(0 | X). Then Y

R(X) = argmin E[|A(X)]]
AX)

where E[ |A(X) | ] is taken with respect to the marginal p(X).

. [E[IA(X)I]=J

VA

<J dH) p(x)dx and p(x) = JE(H;x)n(H)dH
A (x)




