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Astronomical point source detection

Figure: Cartoon of partial point source data

Lucas Janson (Harvard Statistics) BLiP: Signal Discovery and Localization 1 / 9



Informal problem statement

Want method that looks at the data and outputs regions G1, . . . , GR ⊂ L so as
to:

max E [Power(G1, . . . , GR)]

s.t. FDR := E
[
#{Gr containing no signal}

max(1, R)

]
≤ q,

G1, . . . , GR ⊂ L are disjoint.

What does high Power() look like?

As many (true) discovered regions Gr as possible

Discovered regions Gr should be as small as possible

Existing work: no formalization of what “power” means, so cannot optimize it
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Valuing discovered regions

Define a weighting function w(G) that measures value of discovering a group

Should penalize larger groups

A canonical choice is inverse-size weighting: w(G) = 1/|G|

If G are circles on a sky survey, w(G) = 1/radius(G) natural

If want to precisely know the number of sources in each G:

Pair each G with a J ⊂ N representing possible numbers of sources in G

Set w(G, J) = 1/|J | (we call this the “separation-based” weight function)
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Optimizing resolution-adjusted power

Sum weights of true rejections to get Power():

Power(G1, . . . , GR) =

R∑
r=1

IGr
w(Gr),

where IG is the indicator that G contains a signal (i.e., is a true discovery)

Then the power of a Bayesian method that discovers G1, . . . , GR is

E[Power(G1, . . . , GR) | Data] = E

[
R∑

r=1

IGr
w(Gr)

∣∣∣∣∣ Data

]
=

∑
G⊆L

pGw(G)xG,

xG ∈ {0, 1} is indicator that G is one of the method’s discoveries

pG = E[IG | Data] is posterior inclusion probability (PIP)
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Posterior optmization

Optimal Bayesian method would solve:

max
{xG}G⊆L

Power =
∑
G

pGw(G)xG

s.t. FDR := E

[
#{false discoveries}

#{discoveries}

∣∣∣∣∣ Data

]
=

∑
G(1− pG)xG∑

G xG
≤ q∑

G3`

xG ≤ 1 ∀` (all discoveries are disjoint)

xG ∈ {0, 1} ∀G.

Problem is large and non-convex

But can be approximated by a linear program (fast!)

Solution provably controls FDR and has computable bound on suboptimality

Only search over G = circles (of any radius and center)
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Bayesian Linear Programming (BLiP)

Just needs posterior inclusion probabilities pG as input

From any Bayesian algorithm for computing/approximating the posterior,

E.g., MCMC (average over posterior samples whether G contains a signal)

E.g., variational inference

Figure: p denotes dimension of linear model being fit, with n = p/2
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Point-source detection

100 x 100 pixel sub-image of Messier 2 star cluster from Sloan Digital Sky Survey

Ground truth available from much more powerful Hubble Space Telescope

StarNet (Liu et al., 2021): variational approx.’s MAPs + 0.5-pixel slack

continuous space of locations L: BLiP takes < 10 min for 15 FDRs

Figure: 20 x 20 pixel sub-image; green dots = ground truth, red regions = false
discoveries, blue regions = true discoveries
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Point-source detection (contd)
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Point-source detection (contd)
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Conclusion

BLiP is a powerful, principled, efficient, and flexible method for
resolution-adaptive signal discovery

Flexible objective function

Provable error control and verifiable near-optimality

Substantial power gains in minutes on point-source detection

Software packages pyblip (Python) and blipr (R)

Potential for other signal discovery problems with spatial structure

paper available at: https://arxiv.org/abs/2203.17208

all code posted at: https://github.com/amspector100

Thank you!
http://lucasjanson.fas.harvard.edu

ljanson@fas.harvard.edu
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