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Signal source extraction

Image credit: NASA/DOE/Fermi LAT
Collaboration

• Data are available in form of photon
counts i = 1, . . . , n for which we
know:

xi: galactic longitude,
yi: galactic latitude,
Ei: energy.

• Main Goal: locate and quantify the
signal of astronomical sources.

⇓

accurately separate the background
contamination.

2



Signal source extraction

Image credit: NASA/DOE/Fermi LAT
Collaboration

• Data are available in form of photon
counts i = 1, . . . , n for which we
know:

xi: galactic longitude,
yi: galactic latitude,
Ei: energy.

• Main Goal: locate and quantify the
signal of astronomical sources.

⇓

accurately separate the background
contamination.

2



Signal source extraction

Image credit: NASA/DOE/Fermi LAT
Collaboration

• Data are available in form of photon
counts i = 1, . . . , n for which we
know:

xi: galactic longitude,
yi: galactic latitude,
Ei: energy.

• Main Goal: locate and quantify the
signal of astronomical sources.

⇓

accurately separate the background
contamination.

2



Previous attempts

Single Source Models

• allow to discover a single
source at a time;

• work very well on small
areas;

• multiple approaches in
literature [Mattox et al. (1996),
van Dyk et al. (2001), Protassov
et al. (2002), Park et al. (2006),
Weisskopf et al. (2007), Knoetig
(2014),. . . ]

Multiple Source Models

• Allow a simultaneous detection
of multiple sources in a map.

• Computationally demanding.

• Require the knowledge of large
areas of the background.

• Only few attempts in literature
[Guglielmetti et al. (2009),
Primini and Kashyap (2014),
Jones et al. (2015)]
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The statistical model

Let us start from the finite mixture model for xi = (xi, yi):

f(xi|Θ) = δs(xi|ϑs) + (1− δ)b(xi|ϑb), δ ∼ Beta(λs, λb).

The Source Model s(·|·)

• the way how photons from a
source distribute in the space is
known (Point Spread Function);

• there is no a priori information on
the number of sources and their
location in a map.

s(xi|F , Ei) =
∫

PSF(xi|µ, Ei)F(dµ),

F ∼ DP(αs,F0), F0 :

{
µx ∼ U(xm, xM ),
µy ∼ U(ym, yM ).

The Background Model b(·|·)

• complex and completely
unpredictable background, which
tends to be smoother than the
signal of the sources;

• let us define the B-spline kernel
ϕ(xi|`, b) = B4(xi|`)B4(yi|b):

b(xi|G) =
∫
ϕ(xi|`, b)G(d`, db),

G ∼ DP(αb,G0),

G0(`) :


`3 ∼ U(xm, xM )

`j ∼ U(xm, `j+1) j = 1, 2

`j ∼ U(`j−1, xM ) j = 4, 5.
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Preventing missclassification

False Positives (Type I Error)

Groups of photons from the
background are confounded with

point sources.

False Negatives (Type II Error)

The signal from a point source is
absorbed by the background model.

• Identification constraint:

V(`k) > c, V(bk) > c, k = 1, 2, . . .

where V(·) is the variance of a B-spline function [Carlson (1991)].
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An extension that includes the energy

The previous model can be further extended as

fext(xi, Ei|Θext) = δs(xi|Ei,F)g(Ei|Emin, ηs)+
(1− δ)b(xi|G)g(Ei|Emin, ηb),

(1.8)

where g(·|e, η) is the density function of a Pareto distribution with scale
e = Emin and shape parameter η.

• This modelling approach might look as simplistic and does not
properly reflect the high complexity of the data...

• ...however, we believe it is useful in a first stage of the analysis to
explore whether the energy variable helps increasing the detection
performance of the model.
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Dealing with complex posterior distributions
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Figure 1: distribution of the number of
sources on a simulation experiment

(9 is the true value).

• The posterior distribution of ks

contains the information about the
number of sources.

• Regions of the map with a large
concentration of posterior draws are
likely to contain at least a source.

• The posterior distribution of some
source locations µk is multimodal.

• We further notice the label switching
effect.

• We develop a post-processing
algorithm to extract the relevant
information from the posterior
distribution of µ.
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Figure 2: Scatterplot of µ(t)
j = (µ(t)

jx , µ
(t)
jy ),

for j = 1, . . . , 12 and for every iteration t.
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The post-processing algorithm

• Divide the map into small,
rectangular pixels;

• Determine the first k∗ modal
pixels and call them
R1, . . . ,Rk∗ ;

• For each R, compute
Pr(KRm

≥ 1| . . . ), the
probability of containing at
least one source, and
eventually enlarge the region
until the threshold of 0.95 is
reached.
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Simulation experiments

• Simulate the number of
photons from a source s
with location µs and
power-law spectrum with
parameters (F0,s, %s)

• Simulate the background
contamination from the
model of Acero et al.
(2015).

• We simulated 20 different
maps, each of which with
more than 800 sources.

power-laws = F0,s

(
E

1GeV

)−%s

F0,s and %s are simulated according
to Abdo et al. (2010).
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The Signal-to-Noise Ratio

• We define as signal-to-noise ratio of a source the quantity

Rs =
∑
i,j,k

Λs(i, j, k;µs, F0,s, %S)
Λb(i, j, k) ,

where i, j, k refers to the ij-th spatial pixel and the k-th energy
pixel,

Λs(i, j, k;µ, F0, %) = PSF(i, j|k,µs) · F0,s

(
Ek

1GeV

)−%s

· ε(Ek),

ε(Ek) is the exposure, and Λb(i, j, k) is the background model of
Acero et al.

• The larger is Rs, the more intensive is the signal of the source with
respect to the background.
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Simulation experiments - Results
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Figure 1: Results obtained over the 20 simulated maps. 11



Simulation experiments - Results
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Application to Antlia 2 Fermi LAT data

• ∼22.000 photons available
within the energy range
[0.5GeV, 300GeV];

• The background
contamination from our
galaxy is visible in the
bottom of the image;

• 16 sources are known to be
in this area from 4FGL
catalogue.
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Application to Antlia 2 Fermi LAT data - background fitting
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Figure 2: Left: expected posterior background density. Right: Acero et
al. (2015)’s background model.
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Application to Antlia 2 Fermi LAT data - source detection
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