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SEICICILI  Total Electron Content (TEC) map

Total Electron Content (TEC) map

@ lonosphere Total Electron Content (TEC) is defined as the total
number of electrons in the path between satellite? radio transmitter
and ground-based receiver. (1 TEC unit (TECU) = 101°
electrons/m?)
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@ lonosphere Total Electron Content (TEC) is defined as the total
number of electrons in the path between satellite? radio transmitter
and ground-based receiver. (1 TEC unit (TECU) = 101°
electrons/m?)

@ TEC affects the propagation of radio waves, leading up to 10s meters
positioning error in the GNSS Positioning, Navigation and Timing
(PNT) services. Better knowledge of TEC map will make PNT
services more accurate.

?satellite of The Global Navigation Satellite Systems (GNSS)
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(A) Madrigal TEC map (B) Madrigal TEC map with median filter (C) IGS TEC maps
(~74% missing) (~47% missing) (no missing)

Figure: TEC map from the Madrigal Database (A) without median filter, (B)
with a 3° x 3° median filter and (C) TEC map from the International GNSS
Service (IGS).
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@ The goal of the project is to reasonably “fill in* the missing values
within TEC maps. Pan et al. (2020) used DCGAN-based models for
TEC map completion, relying on IGS TEC maps as either reference or
training data. But overall the IGS data is of low-resolution, and we
want to preserve the high-resolution nature of the TEC map.
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Background Matrix Completion Problem

Matrix Completion Problem

@ To impute the TEC maps, we adopt classical statistics techniques
called matrix completion.
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ST I T
Matrix Completion Problem

@ To impute the TEC maps, we adopt classical statistics techniques
called matrix completion.

@ Matrix completion is a commonly used method in designing
recommender systems. With a user-item rating matrix, for example,
matrix completion can infer the potential rating a user would give to
an item he/she has never consumed.
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Background Matrix Completion Problem

Matrix Completion Problem

Rank-Restricted SVD (Mazumder et al., 2010)

. 1
min H(M,) := EHPQt(Xt — M) + Al M| (1)

t

where || M¢||. is the nuclear norm, i.e. sum of all singular values, of M;.
Following the notation in (Candés and Tao, 2010), the projection Pq,(X})

is an m x n matrix keeping all observed entries of X; and replacing all
missing entries with 0.

e It is a well-known result that the solution is M; = U,S\(D,)V,”,
where r = min(m, n) and U,, D,, V, are the components of rank-r
SVD of X;. Sx(D,) =diag[(c1 — A+, (02 = A4, ..., (or — A)4] is
the soft-thresholding operator.
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Background Matrix Completion Problem

Matrix Completion with Factorization

Maximum-margin Matrix Factorization (MMMF) (Srebro et al., 2005)

. 1
min  F(A, B) = o [Pa, (X — ABDIE + 2214 + |BI)

g 1

with solution A, = U,S)\(Dr)% and By = V,S5\(Dy)?

(2)
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Background Matrix Completion Problem

Matrix Completion with Factorization

Maximum-margin Matrix Factorization (MMMF) (Srebro et al., 2005)

: 1
min - F(Ar, Br) == 5 |[Pa.(X: — A:B/)IIF +2 (HAtHF +BellF) ()

~

with solution Ay = U,Sy(D )% and By = V,S5\(Dy)

N=

@ Such a factorization setup has direct interpretations in the factor
matrices A, B. For example, the original map is of size m x n, where
m, n corresponds to latitude and longitude. Then each row in A and
B can be considered as the “latent feature” of each latitude and
longitude. The final imputation at any location is the inner product of
the feature vectors of the corresponding latitude and longitude.
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Background Matrix Completion Problem

Matrix Completion with Factorization

SoftImpute-Alternating Least Square (Hastie et aI., 2015)

: 1
fmin F(At,Bt)ZZEHXt ABTHF+ (\\Ar\\F+\\Br!\F) (2)

where X, is a "filled-in" m x n matrix, with X; = Pg,(Xt) + Pqu (A:B),
and A;, B; are the two factor matrices in the previous iterative step.
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Matrix Completion with Factorization

(A) Original Map (B) Softimpute

a0 50 60

o 10 20 30 40 50 600 10 20 30
Total Eisciron Gontent (TECU) Total Eisciron Gontent (TEGU)

Figure: TEC maps: observed (left) and fitted by the Softlmpute approach (right).
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BETLCICINI  Spherical Harmonics

Spherical Harmonics

@ Apart from the matrix completion method, one can also impute each
TEC map X; with Spherical Harmonics (SH).
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BETLCICINI  Spherical Harmonics

Spherical Harmonics

@ Apart from the matrix completion method, one can also impute each
TEC map X; with Spherical Harmonics (SH).

@ Spherical Harmonics is approximating data on a surface with a linear
combination of several basis functions. For TEC map, we can think of
TEC value distributed on the globe, and we use Spherical Harmonics
to approximate this surface of TEC values.
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Spherical Harmonics

(A) Original Map (B) SH fitting Map

0 3 6 9 12 15 18 21 24 MLT

Figure: Example of Spherical Harmonics Fitting
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BETLCICINI  Spherical Harmonics

Spherical Harmonics

Hu Sun (U-M
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F1GURE 1: Spherical harmonics.

Figure: Source: Nortje et al., 2015
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Conceptual Framework

Our final framework has the following features:

@ Impute a consecutive sequence of TEC maps (i.e. TEC videos)
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Conceptual Framework

Our final framework has the following features:

Impute a consecutive sequence of TEC maps (i.e. TEC videos)

Use a matrix factorization formulation as the imputed matrix

Use spherical harmonics as a warm-start (we call it "auxiliary data")
Penalizes the matrix norm of the factor matrices (soft constraint on
rank)

Reinforce smoothness of the imputed results along the temporal
dimension

Objective function has the form:

Imputation Loss + A1 x Matrix Norm Penalty
+ Az x Temporal Smoothness Penalty
+ A3 X Auxiliary Data Penalty
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Conceptual Framework

Our model has a name "Video Imputation with Softlmpute, Temporal
smoothing and Auxiliary data* (VISTA)
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Conceptual Framework

Objective Function

T

1
min < F(Ay.7,BL.T) £ P, B)|I%
Al:T,BI:T{ (AT, Br.7) 22” Q. ( B: )%
A T
1
+ D AN+ 11Be17)
t=1
o T
+ 23 AB] - AcaBLL |
t=2
A T
3 T
2w sl
where Y1, Yo,..., Y7 are m x n auxiliary data with no missing values.
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Conceptual Framework

An alternative perspective to interpret the objective function is to think
about it under a Bayesian setup:

X: ~ N(A:B/, 0?) (Data generating model)
A ~ N(O, All o?) (Prior of A)
B: ~ N(0, Alla?) (Prior of B)
A:BT ~ N(A:_1B/] ,, ;202) (Random walk assumption)

1
A:BI ~ N(Yt,

—0?) (Prior of ABT)
A3

And the objective function is maximizing the posterior likelihood based on

T frames of data.
Hu Sun (U-M) CHASC 2021 April 27, 2021



Algorithm
Algorithm Outline

@ There are in total T frames to be imputed at the same time, and
each frame has its own A;, B; factors.
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@ There are in total T frames to be imputed at the same time, and
each frame has its own A;, B; factors.
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Algorithm
Algorithm Outline

@ There are in total T frames to be imputed at the same time, and
each frame has its own A;, B; factors.
@ Update the factors Ay, Az, ..., A1, B1, B, ..., BT cyclically:
Al A— - 2 Ar—=>B B — - = Br A - A — ...
@ Fix 2T — 1 matrices and update one matrix at a time with

majorization-minimization (MM) algorithm. The final form is simply
doing a least square.

Hu Sun (U-M) CHASC 2021 April 27, 2021 8/28



Algorhm
Update Matrix with Least Square

Suppose in the k-th round, we wish to update A;. The current values for
the other factors are: A(1k+l), Agkﬂ), ce Agljl), Agk), . .A(Tk) and

Bfk), B2(k), ceey Bg). Keeping every matrix other than A; fixed at their

current values, the convex optimization problem is reduced to the
following optimization problem:

Bff%)

. k+1) A (k
”l\'t”{ (A |A(1t 1,A§+)1 T

1 k k
£ 2P, (X = AdBI)T)|E + uAtuF+ 21— ABIN T
)\2 k+1
+ e AT - AL >(Bt DTz

A k k
221 |APL (BT - A8 ))Tu%}
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Algorhm
Update Matrix with Least Square

The very first term is || Pq,(X: — (B(k )T)||%, which can be upper
bounded easily by:

k k k k
|Pa,(Xe — Ac(BINTIIE < [Pau(Xe) + Por (A (BI)T) — A(BI) T2
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Update Matrix with Least Square

Substituting the first term with its upper bound, and denote the new

objective function as Q(A; |A1ktJr11),A(tl_?1 T ng%) Then one can take the

derivative of Q w.r.t. A; and sets it to zero and get:

~1
AP — [(1 + Xa(lgeey + les1y) + 23)(BY) 7B + )‘11} z08"

where
Z(k) Pq, (Xe) + PQJ_(A(k)(B(k))
k+1 k k
+ A2 (I{t>1}A( Y )(B( )) + I{t<T}A£+)1(B£+)1)T)
+ A3Vt
Hu Sun (U-M)
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Algorithm
Final Algorithm

Algorithm 1 softImpute-ALS with Temporal Smoothing and Auxiliary Data

Input: m xn Sparse data X1, X», ..., Xp, mxn auxiliary data Y7, Y3, . .., Y, operating rank 7. Maximum iteration

K and convergence threshold 7.

Output: Imputation of sparse data A; BY , A, BY, ..., ArBY.

1:

©

© N U AW

Initialization: For 1 <t < T, A(l) UiDy, B( ) = = V,D,, where U;, V; are m X r,n x r randomly chosen
matrix with orthogonal columns. Dt is Loxr

. Update A:
cfort=1:Tdo

a. Let X, = = Po,(X:) + Poy (AUC)(BE)C))I ), which is the “filled-in” version of X,
b. Let Zt( ) be the wei ighted label in equation (11)

c. Agk“) is updated as equation (13)

: end for
: Update B: For every t, repeat a,b,c steps above, with Xt(k), ka) being replace by XfHE), Z;HE)‘ Bt(k'H) is

calculated following equation (14)

: Repeat updating A;.r and By, until convergence. The algorithm converges when

max{VF® VF®, ..., VEP} < r, with VF® defined in (15).

: For any ¢, denote the final output as Ay, Bf. Let X; = Po,(X;) + Poy (Ar(BH)T).

Do SVD for A} (B;)™ = U; (D})2(V)T
Define M; = X;V;* and do SVD for M; = U:D.RY.
Do soft-thresholding on Dy: Dy », = diag[(o1 — A1)+, (02 — A1) 4, .- -, (00 — A1) 4]

Output imputation for time ¢ as U, D, », (V;*R;)T

Hu Sun CHASC 2021 April 27, 2021

10/28



Convergence Guarantee

Across the iterations of our algorithm, we denote the iterative value of
A1.7, B1.7 in the k-th round of algorithm as Aglf)T, B{k% Then we can
prove the following property of our algorithm:
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Theoretical Guarantees
Convergence Guarantee

Across the iterations of our algorithm, we denote the iterative value of
A1.7, B1.7 in the k-th round of algorithm as Aglf)T, B{k% Then we can
prove the following property of our algorithm:

Objective Function is Non-Increasing

Define the descent of objective function value at iteration k as
A = F(AK By — F(AlID BlEI)y Then the value of the objective
function is non-increasing, i.e.,

k k k P P .
F(AY), B > FALTY, BIY) > F(AlSY, BIY),

thus Ayg >0, for all kK > 1.
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Convergence Rate

Convergence Rate Lower Bound

Let the limit of the objective function F(Aglf-),-, Bfk;-) be £°°, we have:

(1) p(1) 0
min Ay, < F(ALT. Brr) — f
1<k<K - K

where K is the total number of iterations.

These results suggest that our algorithm is converging at a rate of

O(1/K).
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Empirical Analysis: Data Pipeline

[ Box-Cox Transformation )
with A = 0.1 ) pre-processing
_— post-processing

(" Calculate the mean ()]
and standard deviation

Input Video .
(_(0) of all observed entries )
- /R

( Standardize all observed
| entries with the y, @ N
Impute Multiply all entries with & ‘
Algorithm \ and add p )
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| oftheinputvideo | N ) (— TInverse Box-Cox )
Fit each frame with | $ transformation g

spherical harmonics Box-Cox Transformation
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\_order=11v=01 ) Output Video

Figure: Data Pipeline
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SUDICIWGEINVSEIN Simulation Study

Simulation Study: Data

@ In our simulation study, we use the IGS dataset of TEC map, which is
of low resolution but is fully observed without missing values. We fit
our model on several days of IGS data in Sept. 2017. Each day
contains data of size 181 x 361 x 96, where every matrix is of size

181 x 361.
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ST
Simulation Study: Data

@ In our simulation study, we use the IGS dataset of TEC map, which is
of low resolution but is fully observed without missing values. We fit
our model on several days of IGS data in Sept. 2017. Each day
contains data of size 181 x 361 x 96, where every matrix is of size
181 x 361.

@ To mimic some data missing patterns typically observed in Madrigal
database (high-res TEC maps), we artificially “created " some
missingness.
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Simulation Study: Missingness Design

(A) IGS data (B) 70% Random Missing (C) 70% Temporal Missing

o 3 s 9 12 15 m® = 2amr o 3 s s w2 s 1 =2 zwmr

(D) IGS data (High TEC Value) (E) 63x63 Patch Missing (F) 63x63 Patch Temporal Missing

o s s 9 2 15 1 2 2wmT o s s 8 2 5 18 2 2awmr o s & e 2 15 1 2 2awmT

Total Becon ContentTECL)

Figure: Create Missing Data
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ST
Simulation Study: Missingness Design

e Random missingness (sub-figure B): for each matrix, randomly drop
30%/50%/70% of the pixels.

Hu Sun (U-M) CHASC 2021 April 27, 2021 16 /28



SUDICIWGEINVSEIN Simulation Study

Simulation Study: Missingness Design

e Random missingness (sub-figure B): for each matrix, randomly drop
30%/50%/70% of the pixels.

e Temporal missingness (sub-figure C): for the first matrix, randomly
drop 30%/50%/70% of pixels, and let the missing mask move 6
columns horizontally (direction shown as the red arrow).

Hu Sun (U-M) CHASC 2021 April 27, 2021 16 /28



ST
Simulation Study: Missingness Design

e Random missingness (sub-figure B): for each matrix, randomly drop
30%/50%/70% of the pixels.

e Temporal missingness (sub-figure C): for the first matrix, randomly
drop 30%/50%/70% of pixels, and let the missing mask move 6
columns horizontally (direction shown as the red arrow).

e Random patch missingness (sub-figure E): for each frame, randomly
pick a center on a fixed bounding box around high TEC value region

(sub-figure D) and create a 27 x 27 or 45 x 45 or 63 x 63 patch as
missing.
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ST
Simulation Study: Missingness Design

e Random missingness (sub-figure B): for each matrix, randomly drop
30%/50%/70% of the pixels.

e Temporal missingness (sub-figure C): for the first matrix, randomly
drop 30%/50%/70% of pixels, and let the missing mask move 6
columns horizontally (direction shown as the red arrow).

e Random patch missingness (sub-figure E): for each frame, randomly
pick a center on a fixed bounding box around high TEC value region
(sub-figure D) and create a 27 x 27 or 45 x 45 or 63 x 63 patch as
missing.

e Temporal patch missingness (sub-figure F): similar to patch
missingness, but the center of the 27 x 27/45 x 45/63 x 63 patch
moves along the bounding box at the speed of 6 columns(rows) per
matrix (anti-clockwise as shown by the red arrow).
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ST
Simulation Study: Models & Metrics

We consider fitting the following VISTA models on each of the missing
pattern:

@ soft: softimpute as in Hastie et al., 2015: A\; = 0.9, \» =0, A3 =0.
(Benchmark model)

@ TS: softlmpute + temporal smoothing: A1 = 0.9, A\» = 0.05, A\3 = 0.

© SH: softImpute + auxiliary data based on spherical harmonics:
A1 =0.9, X =0,A3 =0.01.

@ TS+SH: softimpute 4 temporal smoothing + auxiliary data based
on spherical harmonics: A\; = 0.9, A, = 0.05, A3 = 0.01.
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ST
Simulation Study: Models & Metrics

To evaluate the performance of the imputation, we compute Relative
Squared Error (RSE):

[P (X7 — Xe)llF

IPas (Xe)llF

where X; is the fully-observed IGS data. Q; is the bitmap indicating the
observed pixels. PQ#(.) is a projection operator onto the missing pixels.
X/ is the imputation of Pq,(X:) and ||.||r is the Frobenius norm.

RSE(Xt, X;(, Qt) -
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SUDICIWGEINVSEIN Simulation Study

Simulation Study: Result of Random Missingness

random temporal

0.75 0.75

0.504 \ 0.50
:\c\ } \ +
£ 0254 0.25 model
S
2 4 TS
€
E 4 ' 4 s
g 000 ® 44 Jt 0.00 s ot § Ts+sH

0.25 + 0.25

30% 50% 70% 30% 50% 70%

% of pixels missing

Figure: Random missing and temporal missing results. Three variants of our
method are considered: TS, SH, TS+SH. The scatter points show the average
test set RSE margin over baseline softlmpute method, positive means
performance better than softlmpute. Error bar gives the 95% confidence interval.
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Simulation Study: Result of Patch Missingness

patch temporal patch
H
_.20 20
2 model
=] + + + 4 TS
: +
3 + 4 sH
g + + 10 ; 4 § Ts+sH
+ o
4 ty
0 0
27x27 45x45 63x63 27x27 45x45 63x63

size of patch

Figure: Random patch missing and temporal patch missing results. Three variants
of our method are considered: TS, SH, TS+SH. The scatter points show the
average test set RSE margin over baseline softimpute method, positive means
performance better than softlmpute. Error bar gives the 95% confidence interval.
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SUDICIWGEINVSEIN Simulation Study

Simulation Study: Imputation Example

(A) IGS data (Ground Truth) (B) softimpute (C) Temporal Smoothing (TS)
N
b
SN
pr.
o
s
w's
L R O L o s s s 2 15 w2 T o s s 9 2 s w2 T

(D) 63x63 Temporal Patch Missing

0N
N
.
23
o
s's
w's
o 3 & 9 1 15w 2 2mT

Figure: Example of imputing IGS data with temporal patch missingness.
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Imputing TEC map
Imputing Madrigal TEC map: Data

@ To impute the final Madrigal TEC map, we fit VISTA on each day of
TEC map, which is of size 181 x 361 x 288. Every matrix is of size
181 x 361. We showcase our results based on two days of data:
Sept-08-2017 (storm day), Sept-03-2017 (non storm day).
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Imputing TEC map
Imputing Madrigal TEC map: Data

@ To impute the final Madrigal TEC map, we fit VISTA on each day of
TEC map, which is of size 181 x 361 x 288. Every matrix is of size
181 x 361. We showcase our results based on two days of data:
Sept-08-2017 (storm day), Sept-03-2017 (non storm day).

e Tuning parameters (A1, A2, \3) are determined with grid-search.

@ Since Madrigal TEC map contains missing values, it not possible to
directly validate the fitted model on the missing values. We instead
randomly drop 20% of the observed pixels and use them as test set,
and we fit our model only on the rest 80% of the observed pixels.
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Empirical Analysis Imputing TEC map

Imputing Madrigal TEC map: Result

Storm Day
# matrices better | # matrices worse
Model testRSE | test MSE than softImpute | than Full model
softimpute (A; = 0.9) 10.895% 2.675 / 285 (98.96%)
TS (A1 = 09,22 =0.2) 9.643% 2.106 284 (98.62%) 267 (92.71%)
SH (A1 = 0.9, A3 = 0.021) 9.936% 2227 287 (99.65%) 274 (95.14%)
Full (\; = 0.9, X2 = 0.2, A3 = 0.021) | 9.357% 1.983 285 (98.96%) /
Directly use Spherical Harmonics 17.354% 6.720 0 (0%) 288 (100%)

Non-Storm Day

# matrices better

# matrices worse

Model testRSE | test MSE than softImpute | than Full model

softimpute (A\; = 0.9) 10.424% 1.324 / 283 (98.26%)

TS (A1 = 0.9, A2 = 0.31) 8.880% 0.958 281 (97.57%) 235 (81.60%)

SH (A\; = 0.9, A3 = 0.03) 9.231% 1.032 287 (99.65%) 278 (96.53%)

Full (A\; = 0.9, )2 = 0.31, A3 = 0.03) | 8.592% 0.895 283 (98.26%) /
Directly use Spherical Harmonics 15.732% 2.893 0 (0%) 288 (100%)
Table 1: Empirical study results from the madrigal database.
Figure: Imputation Result
CHASC 2021 April 27, 2021
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LT A
Imputing Madrigal TEC map: Non-storm Day Example

(A) Original map (B) Auxiliary map from SH (C) Full model

Figure: 2017-09-03/00:02:30 UT Result
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LT A
Imputing Madrigal TEC map: Storm Day Example

(A) Original map (B) Auxiliary map from SH (C) Full model

o 3 & 9w 15w 21 mr

(D) Softimpute model (E) TS model (F) SH model

o 3 & 9 2 15w 21 2mT o 3 6 s w2 15 w2 2mT

Figure: 2017-09-08/00:02:30 UT Result
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Conclusion

@ We propose a new imputation method (VISTA), combining matrix
completion with soft rank constraint, temporal smoothing and
spherical harmonics in a unified framework, to impute Total Electron
Content (TEC) maps with over 50% data missing.
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We propose a new imputation method (VISTA), combining matrix
completion with soft rank constraint, temporal smoothing and
spherical harmonics in a unified framework, to impute Total Electron
Content (TEC) maps with over 50% data missing.

@ Matrix completion provides the basic low-rank structure of the
imputation.

@ Temporal smoothing borrows information from TEC maps at adjacent
timestamp and smooth the low-rank structure.

@ Spherical harmonics provides a warm-start of imputation values at big
patches of missingness.

@ Empirical results suggest improvements on both global-scale and
meso-scale reconstruction.
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Future Plan

@ We plan to release a data product containing the imputed TEC maps
based on VISTA for the last solar cycle (2009-2020).
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Future Plan

@ We plan to release a data product containing the imputed TEC maps
based on VISTA for the last solar cycle (2009-2020).

@ We plan to use matrix/tensor-based factor model and other machine
learning methods to do TEC map predictions using our VISTA data
product as inputs. The ultimate goal is to provide a complete
imputation-prediction pipeline for operational use.
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