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An introduction to SNRs

Methodology :

* Introduction of wavelets and GMCA
° TeStS on 1'0)’ mode|s => Picquenot et al. (2019)

e Inh"OdUCtion Of pGMCA => Bobin J., El Hamzaoui I., Picquenot A., Acero F. (2020)
* Error bars

Applications :

» Asymmetries in Cassiopeia A -> picquenot et dl. (2021)
* Synchrotron rim widths in Cassiopeia A

Conclusion and perspectives




Infroduction




Nova Stello

« Last night of all,
When yond same star that’s westward from the pole
Had made his course to illume that part of heaven »

—Shakespeare’s Hamlet, Act 1 Scene 1
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Supernovae types

Thermonuclear (Type la) Core Collapse

v, [1000 km/s]
.
2.7 5.5

Simulation, from
Wongwathanarat et al. (2015)

Single/double degenerate scenarii (white dwarves)




Core Collagpse Supernovae

Nuclear fusion does not
counter gravity anymore
core collapse
Shock revival by neutrino
heating (boosted by
instabilities)  Janka+2012
Outer layers are ejected
T (1000 /s, Asymmetries induce the

v neutron star kick Nordhaus+2012

Simulation, from
Wongwathanarat et al. (2015) Janka and Mueller 1994

Asymmetries in the explosion proved necessary in
the simulations.




LiInNking the remnant to the supernova

t = 6266 seconds t = 340 years

v, [1000 km/s]
-]
- N 4 5.5

Cassiopeia A seen by Chandra
Simulation, from

Wongwathanarat et al. (2015)

What can the remnant ejecta tell us about the initial
asymmetry ¢




LiInNking the remnant to the supernova

t = 100 years

t = 500 years

Simulation about the evolution of a
type la SNR from Ferrand et al. (2019).
A similar work was done in Orlando et

al. (2016) for CC SNR




Schematic supernova remnant

Reverse shock

Compressed
interstellar gas

Forward shock

Ejecta can trace the explosion mechanisms.




Readl supernova remnant

Synchrotron filaments

Si ejecta




Readl supernova remnant

Synchrotron filaments

Si ejecta




Spectro-imaging instruments

Chandra ACIS XMM-Newton EPIC

spatial : 6 arcsec ; spectral : 150 eV

For each photon, the
instruments detect (x,y,E,t).




Supernova Remnants in X-rays
Cas A data cube (x,y,E)

Colors show
flux density

Chandra data (1Ms, 2004), visualized with vaex




Supernova Remnants in X-rays
Cas A data cube (x,y,E)

Colors show
flux density

Chandra data (1Ms, 2004), visualized with vaex




Supernova Remnants in X-rays

Fe
redshift -4000 km/s

/

N\

blueshift +4000 km/s




Supernova Remnants in X-rays

Counla/sik=V

Bl
Energy (kev)

* Thermal emission : continuum + line emission
* Synchrotron emission continuum

How can we obtain distinct maps of the ejecta and
synchrotron distributions 2




Part | : Methodology




Traditional Analysis Methods
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Traditional Analysis Methods

Spectra are retrieved from
small regions for fitting in
Xspec (spectral modeling
package), without leveraging
Chandra’s great spatial
resolution.

2D, then 1D

Abundances, temperature,
nH... Many free parameters
for each component in Xspec.




Traditional Analysis Methods

Si abundancy, Cassiopeia A, Hwang et
al., 2012

The region definition impacts
the spectra.

Adaptative tiling (Voronoi) :
defining cells thanks to
surface brightness.
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Generalized Morphological Components Analysis
(Bobin et al. 2016)

Blind Source Separation (BSS) algorithm retrieving
entangled components from a data set




Generalized Morphological Components Analysis (Bobin et al. 2016)

X = AS +N:ZA,-Si+N
=1

Blind Source Separation algorithm : The aim is to retrieve
n images (x,y) and spectra (E) from the initial (E,x,y) data
set without prior instrumental or physical knowledge.

spectrum spectrum
1 2




n is user defined

X = AS +N:ZAiSi+N
=1

Without any information on A and S,
this problem is ill-posed (infinite number of solutions).

We need a constraint : sparsity




Finding a sparse representation :

Analogy with 1-D :

The Fourier transform
allows to describe periodic
signals with only a few non
zero coefficients.

It makes the different components easier to
disentangle by diminishing the overlapping.




The concept of sparsity

In 2-D :

Wavelet transforms give sparse representations of
images. In particular, Starlets are well adapted for
astrophysical images.

Small scales Large scales

Starlet transform of the Fe structure in Cassiopeia A




The concept of sparsity

E=56.17 - 6.21 keV

>

large gaussian
small gaussians
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On the right, Starlet transform third scale coefficients of gaussians of
different sizes




- Ferecedszeiny
— AU A 1N

LN -

12000

& & ¥ 8 8 ¥ " " 8 >
& & ¥ B B B " " e 0n
a5 8 B M " 8 e
L T R DR TR B R )
& & ¥ 8 8 ¥ " " 8 b

' ' )
600 335 G630 GII
Faergy (ke

- Feresedzzeiny
— AU A N

A

ewn PRl

Energy (kaw

GO0 i35 G30 GIT
Fnergy (ke

A large gaussian with a gaussian spectrum




X = AS +N:ZAiSi+N
=1

Without any information on A and S,
this problem is ill-posed.




X = AS +N:ZA,-Si+N

With a sparsity constraint term :

mznZM\S,np+ IX - AS|;

A constraint using morphological diversity.




: | | B 2

The algorithm is iterative, each iteration
containing two steps :

— Step 1: Estimation of § for fixed A, by simultaneously min-
imizing || X — AS||r and the term enforcing sparsity in the
Wavelet domain;

— Step 2: Estimation of A for fixed § by minimizing || X—AS ||~.




Generalized Morphological Components Analysis (Bobin et al. 2016)

First hypothesis : linear decomposition

Second hypothesis : different components have
different morphology

Third hypothesis : the noise is gaussian additive




Generalized Morphological Components Analysis (Bobin et al. 2016)

First hypothesis : linear decomposition

Second hypothesis : different components have
different morphology

Third hypothesis : the noise is gaussian additive

s it appropriate for X-ray studies 2




GMCA on X-ray data

Generalized Morphological Components Analysis (Bobin et al. 2016)

First hypothesis : linear decomposition

Second hypothesis : different components have
different morphology

=> Yes for extended sources (filaments, clumps, knots...)

Third hypothesis : the noise is gaussian additive

=> No, the noise is Poissonian in X-rays




Test on toy models

Our two toy models have two components :

Instrumental ___
Background

Total Spectrum:

The first component is a synchrotron emission, the
second one is either a thermal emission or a line
emission. We generate Poisson noise.




Test on toy models

Both components are entangled in our toy model




Test on toy models

Components disentangled




Reconstructed image accuracy

SSIM=0.997 SSIM=0.879 SSIM=0.731

Examples of Structural similarity index (SSIM) coefficients associated with the corresponding images

Reconstructed image of the thermal
emission with GMCA blind mode (1Ms)
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Interpolated image of the Fe line emission (1Ms)

Reconstructed image of the Fe line
emission with GMCA blind mode (1Ms)

Reconstructed image of the Fe line
emission with GMCA semi-blind mode (1Ms)
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Fe Line Emission/Synchrotron ratio at 6.58 keV Thermal Emission/Synchrotron ratio at 0.85 keV

SSIM coefficients of the images of the retrieved second component in both toy models




Spectral accuracy

synchrotron
Ratio 13.35
Ratio 5.93
Ratio 2.64
Ratio 1.17
Ratio 0.52
Ratio 0.23

synchrotron
Ratio 13.35
Ratio 5.93
Ratio 2.64
Ratio 1.17
Ratio 0.52
Ratio 0.23

Ratio 0.10

6.4 6.6 l 5 1 2
Energy (keV) Energy (keV)

Spectra of second component retrieved by GMCA in both toy models

Dashed lines : theoretical models. On the right, we can see
important deviations in high energy from the model.




Test on real data of Cas A

Ca line emission :

Integration on 3.75-3.95 keV

Image in square
root scale




Test on real data of Cas A

Ca line emission :

GMCA on 3.6-4.1 keV

Image in square
root scale




Application on real data of Cas A

Application to the data cube
between 5 and 8 keV :

7

== Red-shifted Fe structure

Synchrotron

== B|ye-shifted Fe structure

~




Generalized Morphological Components Analysis (Bobin et al. 2016)

First hypothesis : linear decomposition

=> Associates mean spectra to retrieved images.
Consistent results |

Second hypothesis : different components have
different morphology

=> Yes for extended sources (filaments, clumps, knots...)

Third hypothesis : the noise is gaussian additive

=> No, the noise is Poissonian in X-rays.
But the results are consistent nonetheless.




Akalke Information Criterion

How can we choose n, the number of components to
retrieve ¢




Akalke Information Criterion

How can we choose n, the number of components to
retrieve ¢

The algorithm being fast-running, the best solution is to try
different values of n.

The minimum of the Akaike Information Criterion (AIC) can
help to determine a good number of components :

AIC = n x C- 2In(L)

complexity of the model goodness of fit
proportional to n




Akalke Information Criterion

{1

—=50000 1

200000 A

150000

200000 4

o =230000 1

-300000

—350000 4

—400000 A

Components retrieved in the real data of Cas A depending on n, and the
corresponding AlC




(Bobin J., El Hamzaoui I., Picquenot A., Acero F.)

A brand new version of GMCA has been developed
during this thesis to take into account Poissonian noise.

The linear model is replaced by the

probability for a given sample to take the value ,
given by the Poisson law :

e—ASd,,;,.ect lelem) ASdirect [elem]X[elem]

P(X [elem||ASgirect|elem]) = X [elem)!




pGMCA needs every wavelet scale to reconstruct S in
the pixel domain between each iteration in order to
calculate the likelihood.

- >
The ’:’41{9” X —AS HF term is replaced by the

Poisson likelihood |L(X, ASgirect)

The implementation is still iterative, but a preliminary
GMCA is needed to make a first guess, as pGMCA s

very sensitive to the initial conditions.

48



First hypothesis : linear decomposition

=> Associates mean spectra to retrieved images : every
pixel has the same spectrum. Consistent results |

Second hypothesis : different components have
different morphology

=> Yes for extended sources (filaments, clumps, knots...)

Now the Poissonian noise is properly handled !




Errorbbars with real data

In order to fit the spectra with physical models, we need
errorbars associated with the retrieved spectra.




Errorbbars with real data

In order to fit the spectra with physical models, we need
errorbars associated with the retrieved spectra.

However, the count distribution of the disentangled
components are not of a Poissonian nature.

How can we obtain errorbars from a single dataset 2




Booftstrap

The Bootstrap is a statistical method consisting of a
random sampling with replacement from a current set of

data. In our case, the events are the detected photon
characterized by the triplet (x,y,E).

-IE

First bootstrap ~ Second bootstrap

Original data . .
resampling resampling

An example of Bootstrapping




Retrieving Error bars

Applying bootstrap on a Poisson data set is exactly equivalent to
adding Poisson noise to the Poisson data set :

[ 1 Real data
Resampled data
[ 1 Poisson(real data)
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Retrieving Error bars

With a simulated image of Cassiopeia A :
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Retrieving Error bars

...which is reflected in the bias in the components retrieved by
PGMCA on bootstrap resamplings

—— Real data
—— Resampled data
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pGMCA is highly sensitive to the additional noise



Constrained bootstrap method

How can we develop a method giving an appropriate histogram 2




Constrained bootstrap method

How can we develop a method giving an appropriate histogram 2

By working directly on the histogram, rather than on the
individual events |




Constrained bootstrap method

KDE
Reconstructed histograms
1 Real histogram

Step 1 :Generating N
histograms with a spread
around the data mimicking
that of a Monte-Carlo

Number of pixels

2IO 3IO
Pixel values

Square example

6'§ [ 1 Reconstructed histogram from KDE
Reconstructed isolated pixels
»] 1 Real histogram

Number of pixels

10_1 - T T T T T
-50 0 50 100 150 200 250 300 350 400
Pixel values

Simulated Cas A




Constrained bootstrap method

KDE
Reconstructed histograms
1 Real histogram

Step 1 :Generating N
histograms with a spread
around the data mimicking
that of a Monte-Carlo

Number of pixels

2IO 3IO
Pixel values

Square example

Si'ep 2 . Creqﬁng new 6 1 Reconstructed histogram from KDE
. . . 5 4 Reconstructed isolated pixels
images by imposing the .| 1 Real histogram
new histograms on the

original image

Number of pixels

10_1 - T T T T T
-50 0 50 100 150 200 250 300 350 400
Pixel values

Simulated Cas A




Constrained bootstrap method

Constrained bootstrap —— Constrained boolstrap

Monte-Carla - Monta-Carlo

Rea! data

-

Nurmber of pixels
Standard devialion

59 109 9'15(- 200 253 3 5 H en 172a 1% 200
Pixel values Pixel values

Simulated image of a

Cas A

Histograms Associated standard deviation

Black : Original data Red : Resampled data Green : Monte-Carlo

Comatrainec toctsrap
MeeveCarlo

Wavelet
scales

Standard

deviation

Stancand deviation




Constrained bootstrap method

The constrained bootstrap corrects the bias in the pGMCA results

—— Real data —— Resampled data
—— Resampled data —— Real data
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Classical bootstrap Constrained bootstrap




Constrained bootstrap method

The constrained bootstrap corrects the bias in the pGMCA results

—— Real data | —— Resampled data
—— Resampled data —— Real data
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Classical bootstrap Constrained bootstrap

We removed the bias, but we do not control the variance




Constrained bootstrap method

Retrieving errorbars on Poissonian data sets for non-linear
estimators is an open and general question.

Our constrained bootstrap :

» gives unbiased results => test of robustness around initial
conditions
» gives inconsistent spread => no physical significance




Part Il : Applications




Asymmetries in Cassiopeia A

Qur first application on real

data :
/

== Red-shifted Fe structure

Synchrotron

== B|ye-shifted Fe structure

~

=> 3D reconstruction of the ejecta Noise




Velocity Asymmetries

Red-shift Blue-shift

Fe XXIV.




Velocity Asymmetries

red-shifted Ar

3.00 3.05 3.10 3.15 320 3.25 3.30

blue-shifted Ar

3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35




Lighter elements

Probing the Fe at different
lonization states

10° 4 T T T i = —
085 090 095 100 105 110




Morphological Asymmetries

GMCA images
The Power-Ratio method characterizes |(red+blue)

the distribution asymmetries of
elements in Cas A.

Mirror Asymmetry

Elliptical Asymmetry

PRM introduced by Buote et al. (1995) and for SNRs
by Lopez et al. (2009) The blue dots are the centroids




Morphological Asymmetries

Distribution asymmetries in Blue or Red shifted components :

Mirror Asymmetry
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Fjecta and neutfron star

Center of explosion

Neutron star o 20 arcsec

Directions of each red- and blue-shifted components
from the center of explosion.




Ejecta velocities

1D Line of Sight”

19 2300 + 1400

20a 3200 + 500

27 5700 + 910 From 44Ti NuSTAR
28 1400 =+ 1400 study of Grefenstette et
29 230 + 1300
30 410 L 1700 al. (2017).
34 4700 L 590

35 2100 + 730

6 1100 + 770

43 3300 =+ 500

Mecan* 020 + 510

[Line

Velocities retrieved
by fitting gaussians :
large calibration
uncertainties not

S1 X1
S1 xur’
S xv

0 J
included AT XVII
Ca xix

Fe complex




Synchrotron filaments

0.4-1.7 keV 2.5 - 4 keV

Two main models to account for the filaments :

* Energy loss of the electrons. Energy dependent widths
* Damping of the magnetic field. No energy dependent widths




Synchrofron filaments in X-rays

Profiles at the forward shock




Synchrofron filaments in X-rays

—— 0.4-1.7 keV box 2

\ 2.5-4 keV
k 5-8 keV |
o
<

Profiles at the reverse shock




Conclusion and Perspectives




Generalized Morphological Components Analysis (Bobin et al. 2016)

First hypothesis : linear decomposition

=> Associates mean spectra to retrieved images : every
pixel has the same spectrum. Consistent results,
information on velocity asymmetries.

Second hypothesis : different components have
different morphology

=> Without prior physical information, physically
consistent components. No spurious artifacts.

=>The Poissonian noise is properly handled by pGMCA

/7



Generalized Morphological Components Analysis (Bobin et al. 2016)

=> The performances of the algorithms are very case-
specific. They highly depend on the morphologies of the
components to disentangle. Minimum count of roughly
one million in total.

=> There is currently no way to retrieve physically
significant error bars. Classical bootstrap introduces
biases in the results. Our constrained bootstrap method
is promising, as it gives unbiased results, but the spread
cannot be trusted.




Cassiopela A ejecta

» Application of pGMCA provided a 3D view of the distribution
of individual elements.

* Most of the ejecta are red-shifted
=> Proof of an asymmetric explosion

* Bulk of the ejecta opposite to the neutron star
=> Neutron star kick possibly due to recoil

* Red and blue components are not diametrically opposed,
disfavouring the idea of a jet/counter jet mechanism.
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Cassiopela A filaments

* Narrowing of the filaments with |~ 0.4-17 keV
2.5-4 keV
energy :
=> First detection in Cas A
=> Similar to SN1006 (Ressler et
al., 2014)

=> Distavours damping mechanism

* The dependency in energy of the filaments widths will allow
us to constrain the diffusion properties and testing the
damping hypothesis.




Perspectives

Constraining asymmetries on SNR population
Type la v. Core-Collapse

10 SNRs with more than 250 ks observations (Chandra+tXMM)




Perseus In X-rays

data analysis region

The Perseus galaxy cluster seen by Chandra




Perseus In X-rays

Application of pGMCA




Perseus In X-rays

Application of pGMCA

Optical data Simulation ZuHone et al., 2018




Perspectives

* Introduction of machine learning to constrain the spectral
shapes of the components to retrieve (for example power laws
or thermal models).

* Using adaptive binning to reduce the dynamic range
between high and low energies.

—— spectrum with native binning
e new binning edges
spectrum with new binning

| bayesian block rebinning

1 2 3 4
Energy (keV)




Perspectives

+ Taking into account mosaic observations ( large
Magellanic clouds or galactic center)

* Taking into account the
PSF. In X-rays, we can
consider it constant, but

it is energy dependent
in CTA or Fermi-LAT.

Using data of a different type than (x,y,E) cubes. For
example, transient or other temporally variable
sources (x,y,t) could be studied with our method.




Perspectives

* On future instruments, such as Lynx or Athena’s X-IFU to
exploit fully the amazing data it will gather.

Artist’s impression

spatial : 5 arcsec ; spectral : 2.5 eV

GMCA on the Fe complex in
simulations of X-IFU data

ejecta velocity = +/- 200km/§' )







