Astrostatistics:
 The Intersection of Statistics and Outer Space

Xiao-Li Meng (HU), Aneta Siemiginowska and Vinay Kashyap (CfA)

Joint work with Y. Chen (Michigan), X. Wang (Two Sigma Inc.), D. van Dyk (Imperial College London), H. Marshall (MIT)

October 29, 2019

Calibration Concordance Problem (Example: E0102)

- Supernova remnant E0102
- Four sources correspond to four spectral lines in E0102

Calibration Concordance Problem (Example: E0102)

- Four spectral lines observed with 11 X-ray detectors
- Main challenge - the data/instruments do not agree

Outline

(1) Introduction
(2) Scientific and Statistical Models
(3) Concordance Model
(4) Advantages of Our Approach

- Multiplicative Shrinkages
- Benefits of fitting the variances
- Extentions to handle outliers
- Results from Astronomy Data
(5) Summary

(1) Introduction

(2) Scientific and Statistical Models

(3) Concordance Model
(4) Advantages of Our Approach

- Multiplicative Shrinkages
- Benefits of fitting the variances
- Extentions to handle outliers
- Results from Astronomy Data
(5) Summary

Notation

- N Instruments with true effective area $A_{i}, 1 \leq i \leq N$.
- For each instrument i, we know estimated $a_{i}\left(\approx A_{i}\right)$ but not A_{i}.

Notation

- N Instruments with true effective area $A_{i}, 1 \leq i \leq N$.
- For each instrument i, we know estimated $a_{i}\left(\approx A_{i}\right)$ but not A_{i}.
- M Sources with fluxes $F_{j}, 1 \leq j \leq M$.
- For each source j, F_{j} is unknown.

Notation

- N Instruments with true effective area $A_{i}, 1 \leq i \leq N$.
- For each instrument i, we know estimated $a_{i}\left(\approx A_{i}\right)$ but not A_{i}.
- M Sources with fluxes $F_{j}, 1 \leq j \leq M$.
- For each source j, F_{j} is unknown.
- Photon counts $c_{i j}$: from measuring flux F_{j} with instrument i.

Notation

- N Instruments with true effective area $A_{i}, 1 \leq i \leq N$.
- For each instrument i, we know estimated $a_{i}\left(\approx A_{i}\right)$ but not A_{i}.
- M Sources with fluxes $F_{j}, 1 \leq j \leq M$.
- For each source j, F_{j} is unknown.
- Photon counts $c_{i j}$: from measuring flux F_{j} with instrument i.
- Lower cases: data / estimators.
- Upper cases: parameter / estimand.

Calibration Concordance Problem

(1) Astronomers' Dilemma:

$$
\frac{c_{i j}}{a_{i}} \neq \frac{c_{i^{\prime} j}}{a_{i^{\prime}}} \text { for } i \neq i^{\prime}
$$

Different instruments give different estimated flux of the same object!

Calibration Concordance Problem

(1) Astronomers' Dilemma:

$$
\frac{c_{i j}}{a_{i}} \neq \frac{c_{i^{\prime} j}}{a_{i^{\prime}}} \text { for } i \neq i^{\prime} .
$$

Different instruments give different estimated flux of the same object!
(2) Scientific Question:

- Are there systematic errors in 'known' effective areas?
- Can we derive properly adjusted effective areas?
- Can we unify estimates of the same flux with different instruments?

(1) Introduction

(2) Scientific and Statistical Models

(3) Concordance Model

(4) Advantages of Our Approach

- Multiplicative Shrinkages
- Benefits of fitting the variances
- Extentions to handle outliers
- Results from Astronomy Data
(5) Summary

Scientific and Statistical Models

Scientific Model
Multiplicative in original scale and additive on the log scale.
Counts $=$ Exposure \times Effective Area \times Flux,

$$
C_{i j}=T_{i j} A_{i} F_{j}, \quad \Leftrightarrow \quad \log C_{i j}=B_{i}+G_{j},
$$

where \log area $=B_{i}=\log A_{i}, \log$ flux $=G_{j}=\log F_{j} ;$ let $T_{i j}=1$.

Scientific and Statistical Models

Scientific Model
Multiplicative in original scale and additive on the log scale.

$$
\text { Counts }=\text { Exposure } \times \text { Effective Area } \times \text { Flux }
$$

$$
C_{i j}=T_{i j} A_{i} F_{j}, \quad \Leftrightarrow \quad \log C_{i j}=B_{i}+G_{j}
$$

where \log area $=B_{i}=\log A_{i}, \log$ flux $=G_{j}=\log F_{j} ;$ let $T_{i j}=1$.

Statistical Model

$$
\log \text { counts } y_{i j}=\log c_{i j}-\alpha_{i j}=B_{i}+G_{j}+e_{i j}, \quad e_{i j} \stackrel{i n d e p}{\sim} \mathcal{N}\left(0, \sigma_{i j}^{2}\right) ;
$$

where $\alpha_{i j}=-0.5 \sigma_{i j}^{2}$ to ensure $E\left(c_{i j}\right)=C_{i j}=A_{i} F_{j}$.

- Known Variances: $\sigma_{i j}$ known.
- Unknown Variances: $\sigma_{i j}=\sigma_{i}$ unknown.

(1) Introduction

(2) Scientific and Statistical Models

(3) Concordance Model
(4) Advantages of Our Approach

- Multiplicative Shrinkages
- Benefits of fitting the variances
- Extentions to handle outliers
- Results from Astronomy Data
(5) Summary

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

$$
\begin{aligned}
& \text { log counts |area \&flux \&variance } \stackrel{\text { indep }}{\sim} \\
& \text { Gaussian distributi } \\
& y_{i j} \mid B_{i}, G_{j}, \sigma_{i}^{2} \stackrel{\text { indep }}{\sim} \mathcal{N}\left(B_{i}+G_{j}, \sigma_{i}^{2}\right),
\end{aligned}
$$

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area \&flux \& variance

$$
\begin{array}{rl}
y_{i j} \mid B_{i}, G_{j}, \sigma_{i}^{2} & \stackrel{\text { indep }}{\sim} \\
B_{i} & \mathcal{N}\left(B_{i}+G_{j}, \sigma_{i}^{2}\right), \\
& \stackrel{\text { indep }}{\sim} \\
G_{j}\left(b_{i}, \tau_{i}^{2}\right), \\
& \underset{\sim}{\text { indep }}
\end{array} \text { flat prior, }, ~ l
$$

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area \&flux \& variance

$$
y_{i j} \mid B_{i}, G_{j}, \sigma_{i}^{2}
$$

$B_{i} \stackrel{\text { index }}{\sim}$
$G_{j} \quad \stackrel{\text { index }}{\sim}$
If variance unknown: $\sigma_{i}^{2} \stackrel{\text { indep }}{\sim}$ Inv-Gamma $\left(d f_{g}, \beta_{g}\right)$.

Setting the prior parameters.
(1) $b_{i}=\log a_{i}, \tau_{i}$ are given by astronomers.

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area \&flux \& variance

$$
y_{i j} \mid B_{i}, G_{j}, \sigma_{i}^{2}
$$

B_{i}
$G_{j} \stackrel{\text { indep }}{\sim}$
If variance unknown: $\sigma_{i}^{2} \stackrel{\text { indep }}{\sim}$ Inv- $\operatorname{Gamma}\left(d f_{g}, \beta_{g}\right)$.

Setting the prior parameters.
(1) $b_{i}=\log a_{i}, \tau_{i}$ are given by astronomers.
(2) $d f_{g}, \beta_{g}$ are given based on the variability in data.

Posterior Propriety and Identifiability

Posterior Propriety. The posterior is proper if each source is measured by at least one instrument, i.e., $\left|l_{j}\right| \geq 1$ for all $1 \leq j \leq M$.

Posterior Propriety and Identifiability

Posterior Propriety. The posterior is proper if each source is measured by at least one instrument, i.e., $\left|l_{j}\right| \geq 1$ for all $1 \leq j \leq M$.

Identifiability

- $\tau_{i}^{2}=\infty$: same posteriors with $\left\{B_{i}, G_{j}\right\}$ and $\left\{B_{i}+\delta, G_{j}-\delta\right\}$;

Posterior Propriety and Identifiability

Posterior Propriety. The posterior is proper if each source is measured by at least one instrument, i.e., $\left|l_{j}\right| \geq 1$ for all $1 \leq j \leq M$.

Identifiability

- $\tau_{i}^{2}=\infty$: same posteriors with $\left\{B_{i}, G_{j}\right\}$ and $\left\{B_{i}+\delta, G_{j}-\delta\right\}$;
- the condition number of $\Omega\left(\sigma^{2}\right)$ (conditional variance of $\left.\boldsymbol{B}, \boldsymbol{G}\right)$ is

$$
\begin{equation*}
\frac{\lambda_{\max }\left(\boldsymbol{\Omega}\left(\boldsymbol{\sigma}^{2}\right)\right)}{\lambda_{\min }\left(\boldsymbol{\Omega}\left(\boldsymbol{\sigma}^{2}\right)\right)} \geq \frac{u^{\top} \boldsymbol{\Omega}\left(\boldsymbol{\sigma}^{2}\right) u}{v^{\top} \boldsymbol{\Omega}\left(\boldsymbol{\sigma}^{2}\right) v}=1+\frac{4 \sum_{i=1}^{N}\left|J_{i}\right| \sigma_{i}^{-2}}{\sum_{i=1}^{N} \tau_{i}^{-2}}, \tag{1}
\end{equation*}
$$

where $u=\left(\mathbf{1}_{N}, \mathbf{1}_{M}\right)^{\top}$ and $v=\left(\mathbf{1}_{N},-\mathbf{1}_{M}\right)^{\top}$.

Posterior Propriety and Identifiability

Posterior Propriety. The posterior is proper if each source is measured by at least one instrument, i.e., $\left|l_{j}\right| \geq 1$ for all $1 \leq j \leq M$.

Identifiability

- $\tau_{i}^{2}=\infty$: same posteriors with $\left\{B_{i}, G_{j}\right\}$ and $\left\{B_{i}+\delta, G_{j}-\delta\right\}$;
- the condition number of $\Omega\left(\sigma^{2}\right)$ (conditional variance of $\left.\boldsymbol{B}, \boldsymbol{G}\right)$ is

$$
\begin{equation*}
\frac{\lambda_{\max }\left(\boldsymbol{\Omega}\left(\boldsymbol{\sigma}^{2}\right)\right)}{\lambda_{\min }\left(\boldsymbol{\Omega}\left(\boldsymbol{\sigma}^{2}\right)\right)} \geq \frac{u^{\top} \boldsymbol{\Omega}\left(\boldsymbol{\sigma}^{2}\right) u}{v^{\top} \boldsymbol{\Omega}\left(\boldsymbol{\sigma}^{2}\right) v}=1+\frac{4 \sum_{i=1}^{N}\left|J_{i}\right| \sigma_{i}^{-2}}{\sum_{i=1}^{N} \tau_{i}^{-2}}, \tag{1}
\end{equation*}
$$

where $u=\left(\mathbf{1}_{N}, \mathbf{1}_{M}\right)^{\top}$ and $v=\left(\mathbf{1}_{N},-\mathbf{1}_{M}\right)^{\top}$.

- $\left\{\tau_{i}^{2}\right\} \gg\left\{\sigma_{i}^{2}\right\}$: elongated posterior contours.

Posterior Propriety and Identifiability

Posterior Propriety. The posterior is proper if each source is measured by at least one instrument, i.e., $\left|l_{j}\right| \geq 1$ for all $1 \leq j \leq M$.

Identifiability

- $\tau_{i}^{2}=\infty$: same posteriors with $\left\{B_{i}, G_{j}\right\}$ and $\left\{B_{i}+\delta, G_{j}-\delta\right\}$;
- the condition number of $\Omega\left(\sigma^{2}\right)$ (conditional variance of $\left.\boldsymbol{B}, \boldsymbol{G}\right)$ is

$$
\begin{equation*}
\frac{\lambda_{\max }\left(\Omega\left(\sigma^{2}\right)\right)}{\lambda_{\min }\left(\Omega\left(\sigma^{2}\right)\right)} \geq \frac{u^{\top} \boldsymbol{\Omega}\left(\sigma^{2}\right) u}{v^{\top} \boldsymbol{\Omega}\left(\sigma^{2}\right) v}=1+\frac{4 \sum_{i=1}^{N}\left|J_{i}\right| \sigma_{i}^{-2}}{\sum_{i=1}^{N} \tau_{i}^{-2}}, \tag{1}
\end{equation*}
$$

where $u=\left(\mathbf{1}_{N}, \mathbf{1}_{M}\right)^{\top}$ and $v=\left(\mathbf{1}_{N},-\mathbf{1}_{M}\right)^{\top}$.

- $\left\{\tau_{i}^{2}\right\} \gg\left\{\sigma_{i}^{2}\right\}$: elongated posterior contours.

Alternative: setting $B_{1}=0$ or $\tau_{1}=0$.

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

- Gibbs Sampling: update parameters one-at-a-time.

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.
- The joint distribution of the B_{i} and G_{j} is Gaussian.

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.
- The joint distribution of the B_{i} and G_{j} is Gaussian.
- Hamiltonian Monte Carlo (HMC) - Stan package.

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.
- The joint distribution of the B_{i} and G_{j} is Gaussian.
- Hamiltonian Monte Carlo (HMC) - Stan package.
- Highly correlated parameters, high-dim parameter space.

(1) Introduction

(2) Scientific and Statistical Models
(3) Concordance Model
4. Advantages of Our Approach

- Multiplicative Shrinkages
- Benefits of fitting the variances
- Extentions to handle outliers
- Results from Astronomy Data
(5) Summary
(1) Introduction
(2) Scientific and Statistical Models
(3) Concordance Model
(4) Advantages of Our Approach
- Multiplicative Shrinkages
- Benefits of fitting the variances
- Extentions to handle outliers
- Results from Astronomy Data
(5) Summary

Shrinkage Estimators: Known Fluxes and Errors

Hierarchical model \Rightarrow Shrinkage estimators (weighted averages of evidence from 'Prior' and evidence from 'Data').

Shrinkage Estimators: Known Fluxes and Errors

Hierarchical model \Rightarrow Shrinkage estimators (weighted averages of evidence from 'Prior' and evidence from 'Data').
(1) When fluxes and variances are known,

Original Scale

$$
\hat{A}_{i}=a_{i}^{W_{i}}\left[\left(\tilde{c}_{i} \cdot \tilde{f}^{-1}\right) e^{\sigma_{i}^{2} / 2}\right]^{1-W_{i}},
$$

where

$$
\tilde{c}_{i .}=\prod_{j} c_{i j}^{1 / M}, \tilde{f}=\prod_{j} f_{j}^{1 / M}
$$

$$
\begin{aligned}
& \text { Log-Scale } \\
& \qquad \hat{B}_{i}=W_{i} b_{i}+\left(1-W_{i}\right)\left(\bar{y}_{i}-\bar{G}\right),
\end{aligned}
$$

where

$$
\bar{G}=\frac{\sum_{j} g_{j}}{M}, \bar{y}_{i}=\frac{\sum_{j} y_{i j}}{M}
$$

are arithmatic means.
are geometric means.
The 'weights', $W_{i}=\frac{\tau_{i}^{-2}}{\tau_{i}^{-2}+M \sigma_{i}^{-2}}$, represents the direct information in b_{i} relative to indirect information in fluxes.

Shrinkage Estimators: Known Errors

(2) When fluxes are unknown and variances are known,

$$
\hat{B}_{i}=W_{i} b_{i}+\left(1-W_{i}\right)\left(\bar{y}_{i}-\bar{G}_{i}\right), \quad \hat{G}_{j}=\bar{y}_{\cdot j}-\bar{B},
$$

where $\bar{G}_{i}=\frac{\sum_{j} \hat{G}_{j}}{M}, \quad \bar{B}=\frac{\sum_{i} \hat{i}_{i} \sigma_{i}^{-2}}{\sum_{i} \sigma_{i}^{-2}}, \bar{y}_{i}=\frac{\sum_{j} y_{i j}}{M}, \quad \bar{y}_{\cdot j}=\frac{\sum_{i} y_{j} \sigma_{i}^{-2}}{\sum_{i} \sigma_{i}^{-2}}$.

Shrinkage Estimators: Known Errors

(2) When fluxes are unknown and variances are known,

$$
\hat{B}_{i}=W_{i} b_{i}+\left(1-W_{i}\right)\left(\bar{y}_{i \cdot}-\bar{G}_{i}\right), \quad \hat{G}_{j}=\bar{y}_{\cdot j}-\bar{B},
$$

where $\bar{G}_{i}=\frac{\sum_{j} \hat{G}_{j}}{M}, \quad \bar{B}=\frac{\sum_{i} \hat{B}_{i} \sigma_{i}^{-2}}{\sum_{i} \sigma_{i}^{-2}}, \bar{y}_{i} .=\frac{\sum_{j} y_{i j}}{M}, \quad \bar{y}_{\cdot j}=\frac{\sum_{i} y_{i j} \sigma_{i}^{-2}}{\sum_{i} \sigma_{i}^{-2}}$.
(3) When variances are unknown, shrinkage estimator of variance,

$$
\hat{\sigma}_{i}^{2}=\frac{2}{1+\sqrt{1+S_{y, i}^{2}}} S_{y, i}^{2}, \quad S_{y, i}^{2}=\frac{1}{\left|J_{i}\right|+\alpha}\left[\sum_{j \in J_{i}}\left(y_{i j}-\hat{B}_{i}-\hat{G}_{j}\right)^{2}+\beta\right]
$$

(1) Introduction
(2) Scientific and Statistical Models
(3) Concordance Model
(4) Advantages of Our Approach

- Multiplicative Shrinkages
- Benefits of fitting the variances
- Extentions to handle outliers
- Results from Astronomy Data
(5) Summary

Benefits of Fitting σ_{i}^{2}

- Tolerance to model/error model misspecification.

Benefits of Fitting σ_{i}^{2}

- Tolerance to model/error model misspecification.
- Pitfalls of assuming 'known' variances:
- Overly optimistic 'known variances'
\Rightarrow overly narrow confidence intervals
\Rightarrow possible false discoveries

Benefits of Fitting σ_{i}^{2}

- Tolerance to model/error model misspecification.
- Pitfalls of assuming 'known' variances:
- Overly optimistic 'known variances'
\Rightarrow overly narrow confidence intervals
\Rightarrow possible false discoveries
- 'known variances' \geq true variability
\Rightarrow noninformative results
(1) Introduction
(2) Scientific and Statistical Models
(3) Concordance Model
(4) Advantages of Our Approach
- Multiplicative Shrinkages
- Benefits of fitting the variances
- Extentions to handle outliers
- Results from Astronomy Data
(5) Summary

Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?

Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?

$$
\begin{aligned}
y_{i j} \mid B_{i}, G_{j}, \xi_{i j} & =-\frac{\sigma^{2}}{2 \xi_{i j}}+B_{i}+G_{j}+\frac{z_{i j}}{\sqrt{\xi_{i j}}}, \\
Z_{i j} & \stackrel{\text { indep }}{\sim} N\left(0, \sigma^{2}\right), \\
B_{i} & \stackrel{\text { indep }}{\sim} N\left(b_{i}, \tau_{i}^{2}\right) .
\end{aligned}
$$

Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?

$$
\begin{gathered}
y_{i j} \mid B_{i}, G_{j}, \xi_{i j} \quad=-\frac{\sigma^{2}}{2 \xi_{i j}}+B_{i}+G_{j}+\frac{z_{i j}}{\sqrt{\xi_{i j}}}, \\
z_{i j} \stackrel{\text { indep }}{\sim} N\left(0, \sigma^{2}\right), \\
B_{i} \\
\stackrel{\text { indep }}{\sim} N\left(b_{i}, \tau_{i}^{2}\right) .
\end{gathered}
$$

If $\xi_{i j}{ }^{\text {indep }} \chi_{\nu}^{2}$, i.e. independent chi-squared distributions, the error term
$Z_{i j} / \sqrt{\xi_{i j}}$ follows independent student-t distributions, i.e. $\frac{Z_{i j}}{\sqrt{\xi_{i j}}} \stackrel{\text { indep }}{\sim} \frac{\sigma}{\sqrt{\nu}} \mathrm{t}_{\nu}$.

A Numerical Example with Outliers

Simulation: $N=10, M=40, G_{1}=-1$ and $G_{j}=3, j>1$. Asymptotic variance of log-counts: $e^{-B_{i}-G_{j}} \Rightarrow$ outliers.

A Numerical Example with Outliers

Simulation: $N=10, M=40, G_{1}=-1$ and $G_{j}=3, j>1$. Asymptotic variance of log-counts: $e^{-B_{i}-G_{j}} \Rightarrow$ outliers.

$$
\hat{\mathcal{R}}_{i j}=\frac{y_{i j}-\hat{B}_{i}-\hat{G}_{j}+0.5 \times \hat{\sigma}_{i}^{2}}{\hat{\sigma}_{i}}, \hat{\mathcal{R}}_{i j}=\frac{y_{i j}-\hat{B}_{i}-\hat{G}_{j}+0.5 \times \kappa^{2} / \hat{\xi}_{i j}}{\kappa / \hat{\xi}_{i j}^{1 / 2}}
$$

A Numerical Example with Outliers

Simulation: $N=10, M=40, G_{1}=-1$ and $G_{j}=3, j>1$. Asymptotic variance of log-counts: $e^{-B_{i}-G_{j}} \Rightarrow$ outliers.

$$
\hat{\mathcal{R}}_{i j}=\frac{y_{i j}-\hat{B}_{i}-\hat{G}_{j}+0.5 \times \hat{\sigma}_{i}^{2}}{\hat{\sigma}_{i}}, \hat{\mathcal{R}}_{i j}=\frac{y_{i j}-\hat{B}_{i}-\hat{G}_{j}+0.5 \times \kappa^{2} / \hat{\xi}_{i j}}{\kappa / \hat{\xi}_{i j}^{1 / 2}}
$$

Coverage Properties With Outliers, Misspecification

Poisson Model	Para.	Coverage Probability		Length of Interval	
		log-Normal	log- t	log-Normal	log- t
$N=10$	B	$[0.941,0.959]$	$[0.971,0.975]$	0.067 ± 0.005	0.073 ± 0.002
$N=10$	G_{1}	0.399	0.700	0.090 ± 0.015	0.182 ± 0.045
$N=10$	$G_{2: M} M$	$[0.967,0.977]$	$[0.996,0.999]$	0.077 ± 0.003	0.104 ± 0.002
$N=40$	B	$[0.953,0.969]$	$[0.993,0.998]$	0.041 ± 0.007	0.050 ± 0.001
$N=40$	G_{1}	0.398	0.686	0.045 ± 0.003	0.093 ± 0.013
$N=40$	$G_{2: M}$	$[0.965,0.977]$	$[0.996,0.999]$	0.038 ± 0.001	0.051 ± 0.001

Table 1: $M=40$. Coverage of nominal 95% posterior intervals calculated from 2000 datasets simulated under a Poisson model. The intervals in columns 3 and 4 give the smallest and largest coverage observed for the corresponding parameter. The last two columns give the lengths of nominal 95% intervals in the format: mean \pm standard deviation.
(1) Introduction
(2) Scientific and Statistical Models
(3) Concordance Model
(4) Advantages of Our Approach

- Multiplicative Shrinkages
- Benefits of fitting the variances
- Extentions to handle outliers
- Results from Astronomy Data
(5) Summary

Numerical Results (E0102)

Recap: Supernova remnant E0102.
Four sources are four spectral lines in E0102.

Estimates of $B_{i}=\log A_{i}(M=2$ each panel $)$

- Adjusted so that default effective area, $b_{i}=\log a_{i}=0$.
- 95\% posterior intervals (black: $\tau=0.05$; blue: $\tau=0.025$).
- Some instruments systematically high, others low.

Prior Influence

Instrument	Oxygen		Neon	
	$\tau=0.025$	$\tau=0.05$	$\tau=0.025$	$\tau=0.05$
RGS1	0.570	0.205	0.063	0.016
MOS1	0.279	0.077	0.075	0.019
MOS2	0.355	0.065	0.077	0.017
pn	0.250	0.041	0.620	0.218
ACIS-S3	0.218	0.040	0.270	0.088
ACIS-I3	0.906	0.640	0.099	0.026
HETG	0.648	0.341	0.129	0.034
XIS0	0.180	0.051	0.069	0.018
XIS1	0.298	0.078	0.071	0.019
XIS2	0.463	0.140	0.063	0.016
XIS3	0.772	0.364	0.062	0.018
XRT-WT	0.726	0.278	0.154	0.026
XRT-PC	0.934	0.235	0.906	0.017

Table 2: Proportion of prior influence, as defined by $1-W_{i}$, for E0102 data.

Numerical Results (2XMM)

- 2XMM catalog: used to generate large, well-defined samples of various types of astrophysical objects; collected with the XMM-Newton European Photon Imaging Cameras (EPIC).

Numerical Results (2XMM)

- 2XMM catalog: used to generate large, well-defined samples of various types of astrophysical objects; collected with the XMM-Newton European Photon Imaging Cameras (EPIC).
- Three EPIC instruments: the EPIC-pn, and the two EPIC-MOS detectors (pn, MOS1, and MOS2).

Numerical Results (2XMM)

- 2XMM catalog: used to generate large, well-defined samples of various types of astrophysical objects; collected with the XMM-Newton European Photon Imaging Cameras (EPIC).
- Three EPIC instruments: the EPIC-pn, and the two EPIC-MOS detectors (pn, MOS1, and MOS2).
- Three datasets: hard (2.5-10.0 keV), medium (1.5-2.5 keV) and soft ($0.5-1.5 \mathrm{keV}$) energy bands. The three instruments (pn, MOS1 and MOS2) measured 41, 41, and 42 sources respectively in hard, medium, and soft bands. Faint sources.

Numerical Results (2XMM)

Figure 3: Adjustments of the log-scale Effective Areas for hard band (left), medium band (middle) and soft band (right) of the 2XMM datasets.

Numerical Results (XCAL)

- XCAL data: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.
- Observed in hard ($n=94$), medium $(n=103)$, soft $(n=108)$ bands.
- Pileup: Image data are clipped to eliminate the regions affected by pileup, determined using epatplot.
- Three detectors: MOS1, MOS2 and pn.
- We fit our model and show results on

Sources: $M=103$ (in medium band).
The hard and soft bands data are fitted similarly - treating hard/medium/soft band as three different data sets.

Numerical Results (XCAL): Calibration Concordance

4 out of 103 Sources in medium band. y-axis: G (log flux); vertical bars (left 3 in each panel): mean ± 2 s.d. based on observed fluxes, vertical bars (right 2 in each panel): 95% posterior intervals based on our model.

Prior Influence

Data Name	$\tau_{i}=0.025$			$\tau_{i}=0.05$		
	pn	mos1	mos2	pn	$\operatorname{mos} 1$	$\operatorname{mos} 2$
hard band 2XMM	0.093	0.075	0.082	0.025	0.020	0.022
medium band 2XMM	0.250	0.216	0.222	0.076	0.065	0.067
soft band 2XMM	0.093	0.075	0.069	0.025	0.020	0.018
hard band XCAL	0.010	0.019	0.031	0.003	0.005	0.008
medium band XCAL	0.023	0.016	0.028	0.006	0.004	0.007
soft band XCAL	0.021	0.011	0.007	0.005	0.003	0.002

Table 3: Proportion of prior influence.

(1) Introduction

(2) Scientific and Statistical Models

(3) Concordance Model
(4) Advantages of Our Approach

- Multiplicative Shrinkages
- Benefits of fitting the variances
- Extentions to handle outliers
- Results from Astronomy Data
(5) Summary

Summary

Statistics

(1) Multiplicative mean modeling:
log-Normal hierarchical model.

Summary

Statistics

(1) Multiplicative mean modeling: log-Normal hierarchical model.
(2) Shrinkage estimators.

Summary

Statistics

(1) Multiplicative mean modeling: log-Normal hierarchical model.
(2) Shrinkage estimators.
(3) Bayesian computation: MCMC \& Stan.

Summary

Statistics

(1) Multiplicative mean modeling:
log-Normal hierarchical model.
(2) Shrinkage estimators.
(3) Bayesian computation: MCMC \& Stan.
(9) The potential pitfalls of assuming 'known' variances.

Summary

Statistics

(1) Multiplicative mean modeling:

> log-Normal hierarchical model.
(2) Shrinkage estimators.
(3) Bayesian computation: MCMC \& Stan.
(9) The potential pitfalls of assuming 'known' variances.

Astronomy
(1) Adjustments of effective areas of each instrument.

Summary

Statistics

(1) Multiplicative mean modeling:

> log-Normal hierarchical model.
(2) Shrinkage estimators.
(3) Bayesian computation: MCMC \& Stan.
(9) The potential pitfalls of assuming 'known' variances.

Astronomy

(1) Adjustments of effective areas of each instrument.
(2) Calibration concordance.

Discussions: Ongoing and Future Work

- Correlations among instruments.
- Estimated correlations based on theoretical simulations.
- Prior? Extra data? Uncertainty?

Discussions: Ongoing and Future Work

- Correlations among instruments.
- Estimated correlations based on theoretical simulations.
- Prior? Extra data? Uncertainty?
- Robustness \Rightarrow Misspecified models.

Discussions: Ongoing and Future Work

- Correlations among instruments.
- Estimated correlations based on theoretical simulations.
- Prior? Extra data? Uncertainty?
- Robustness \Rightarrow Misspecified models.
- Better quantification of prior influence.

Discussions: Ongoing and Future Work

- Correlations among instruments.
- Estimated correlations based on theoretical simulations.
- Prior? Extra data? Uncertainty?
- Robustness \Rightarrow Misspecified models.
- Better quantification of prior influence.
- Coverage properties when outliers exist.

Acknowledgement

Yang Chen (UMich), Xufei Wang (Two Sigma), Xiao-Li Meng (Harvard), David van Dyk (ICL), Herman Marshall (MIT) \& Vinay Kashyap (cfA)

