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Calibration Concordance Problem (Example: E0102)

@ Supernova remnant E0102

@ Four sources correspond to four spectral lines in E0102
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Calibration Concordance Problem (Example: E0102)
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@ Four spectral lines observed with 11 X-ray detectors

@ Main challenge — the data/instruments do not agree
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Introduction

Notation

@ N Instruments with true effective area A;, 1 < i < N.

o For each instrument i, we know estimated a; (= A;) but not A;.

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019 21/51



Introduction

Notation

@ N Instruments with true effective area A;, 1 < i < N.

o For each instrument i, we know estimated a; (= A;) but not A;.

@ M Sources with fluxes F;, 1 < j < M.

o For each source j, F; is unknown.

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019 21/51



Introduction

Notation

@ N Instruments with true effective area A;, 1 < i < N.

o For each instrument i, we know estimated a; (= A;) but not A;.

@ M Sources with fluxes F;, 1 < j < M.

o For each source j, F; is unknown.

@ Photon counts ¢j: from measuring flux F; with instrument /.
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Introduction

Notation

@ N Instruments with true effective area A;, 1 < i < N.

o For each instrument i, we know estimated a; (= A;) but not A;.

@ M Sources with fluxes F;, 1 < j < M.

o For each source j, F; is unknown.

Photon counts ¢;;: from measuring flux F; with instrument .
@ Lower cases: data / estimators.

@ Upper cases: parameter / estimand.
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Introduction

Calibration Concordance Problem

@ Astronomers’ Dilemma:

Cj , Cilj .
£ fori £
aj ajr

Different instruments give different estimated flux of the same object!
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Introduction

Calibration Concordance Problem

@ Astronomers’ Dilemma:

Cj , Cilj .
£ fori £
aj ajr

Different instruments give different estimated flux of the same object!

@ Scientific Question:

o Are there systematic errors in ‘known' effective areas?
o Can we derive properly adjusted effective areas?

o Can we unify estimates of the same flux with different instruments?
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Scientific and Statistical Models

@ Scientific and Statistical Models
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Scientific and Statistical Models

Scientific Model
Multiplicative in original scale and additive on the log scale.

Counts = Exposure x Effective Area x Flux,
Cj = TjAiFj, < log(Cyj =B+ G,

where log area = B; = log A;, log flux = G; = log F;; let T;; = 1.
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Scientific and Statistical Models

Scientific Model
Multiplicative in original scale and additive on the log scale.

Counts = Exposure x Effective Area x Flux,
Cj = TjAiFj, < log(Cyj =B+ G,

where log area = B; = log A;, log flux = G; = log F;; let T;; = 1.

Statistical Model
log counts yj;; = logcjj — ajj = B; + Gj + €, ej e N(O,a,-zj);
where ajj = —0.50,-2j to ensure E(c;j) = Cj = AiF;.
e Known Variances: o/; known.

@ Unknown Variances: o;; = o; unknown.
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© Concordance Model
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Concordance Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

. indep . L .
log counts |area & flux &variance ~~" Gaussian distribution,

ind
vi | Bi, G, o2 "SP N (Bi+ G, o?),

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019

26 /51



Concordance Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

indep
~Y

log counts |area &flux &variance Gaussian distribution,

ind
Yij ’ Bia Gj7 01'2 mr\?p N(BI+@a 01'2)7

ind

B; P N(bi7 7—1'2)7
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Concordance Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area & flux &variance
yij | Bi, Gj, (7?

B

Gj

2

If variance unknown: o7

Setting the prior parameters.

indep
Y
indep
~Y
indep
Y
indep
Iav]

indep
~J

Q b; = logaj, 7; are given by astronomers.
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Concordance Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area & flux &variance
yii | Bi, Gj, (7?

B

Gj

2

If variance unknown: o7

Setting the prior parameters.

indep
Y
indep
~Y
indep
Y
indep
Iav]

indep
~J

Q b; = logaj, 7; are given by astronomers.

Gaussian distribution,
N(B,’ + Gj, U,-2),
N(bi7 7—1'2)7

flat prior,
Inv-Gamma(dfg, Bg).

@ dfg, B4 are given based on the variability in data.
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Posterior Propriety and ldentifiability

Posterior Propriety. The posterior is proper if each source is measured by
at least one instrument, i.e., |[;}| > 1 forall 1 <j < M.
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Concordance Model

Posterior Propriety and ldentifiability

Posterior Propriety. The posterior is proper if each source is measured by
at least one instrument, i.e., |[;}| > 1 forall 1 <j < M.

Identifiability

e 72 = 0o: same posteriors with {B;, G;} and {B; + 6, G; — d};
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Concordance Model

Posterior Propriety and ldentifiability
Posterior Propriety. The posterior is proper if each source is measured by
at least one instrument, i.e., |[;}| > 1 forall 1 <j < M.
Identifiability
e 72 = 0o: same posteriors with {B;, G;} and {B; + 6, G; — d};

e the condition number of Q(o?) (conditional variance of B, G) is

Anax(@(?) | 0 Q0P v _ | AXEL o
)‘min(Q(Uz)) = VTQ(O'Z) v =1 W’ (1)

i=17Ti

where u = (1y,1y)" and v = (1y, —1p)".
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Posterior Propriety and ldentifiability
Posterior Propriety. The posterior is proper if each source is measured by
at least one instrument, i.e., |[;}| > 1 forall 1 <j < M.
Identifiability
2

e 77 = 0o: same posteriors with {B;, G} and {B; + 0, G; — 0};

e the condition number of Q(o?) (conditional variance of B, G) is

Aax(R(0?)) _ u' Qo) u A oy

=14 2=t 99 1
Anin(R(a?)) ~ vTQ(a?) v ZfV:l Ti_z (1)
where u = (1y,1y)" and v = (1y, —1p)".

o {72} >> {0?}: elongated posterior contours.
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Posterior Propriety and ldentifiability
Posterior Propriety. The posterior is proper if each source is measured by
at least one instrument, i.e., |[;}| > 1 forall 1 <j < M.
Identifiability
2

e 77 = 0o: same posteriors with {B;, G} and {B; + 0, G; — 0};

e the condition number of Q(o?) (conditional variance of B, G) is

Aax(R(0?)) _ u' Qo) u A oy

— 14 =l 9 1
)\min(Q(Uz)) VTQ(UZ) v ZINZI 7-i_2 ( )
where u = (1y,1y)" and v = (1y, —1p)".
o {72} >> {0?}: elongated posterior contours.
Alternative: setting By =0 or 4 = 0.
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Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019 28 /51



Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

@ Gibbs Sampling: update parameters one-at-a-time.

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019

28 /51



Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.
@ Gibbs Sampling: update parameters one-at-a-time.

@ Block Gibbs Sampling: update vectors of parameters.

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019

28 /51



Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.
@ Gibbs Sampling: update parameters one-at-a-time.

@ Block Gibbs Sampling: update vectors of parameters.

o The joint distribution of the B; and G; is Gaussian.

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019

28 /51



Concordance Model

Bayesian Computation (Unknown Variances)
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Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.
@ Gibbs Sampling: update parameters one-at-a-time.

@ Block Gibbs Sampling: update vectors of parameters.

o The joint distribution of the B; and G; is Gaussian.

@ Hamiltonian Monte Carlo (HMC) — Stan package.

o Highly correlated parameters, high-dim parameter space.
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Advantages of Our Approach
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Advantages of Our Approach Multiplicative Shrinkages

Shrinkage Estimators: Known Fluxes and Errors

Hierarchical model = Shrinkage estimators (weighted averages of evidence
from 'Prior’ and evidence from 'Data’).
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Multiplicative Shrinkages
Shrinkage Estimators: Known Fluxes and Errors

Hierarchical model = Shrinkage estimators (weighted averages of evidence
from 'Prior’ and evidence from 'Data’).

(1) When fluxes and variances are known,

Original Scale Log-Scale
Bi = Wibi + (1 — W;)(yi. — G),
where
. UM g 1/M — & o
o =T1e™ =115 o= 5=
J

are arithmatic means.

%
I
g
S

are geometric means.

The ‘weights', W; = % represents the direct information in b;
relative to indirect information in fluxes.

—2

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019 31/51



Advantages of Our Approach Multiplicative Shrinkages

Shrinkage Estimators: Known Errors

(2) When fluxes are unknown and variances are known,

Bi = Wibj + (1= W))(7i. - Gi), G =7~ B,
e _ B2 i _ R
where G; = Z[J\'ﬂ -, B= 7%318‘;7’2 Vi = Z,Jwyj, yj= 7%';;!2 -
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Advantages of Our Approach Multiplicative Shrinkages

Shrinkage Estimators: Known Errors

(2) When fluxes are unknown and variances are known,

~ -

Bi = Wb+ (1- Wy)(7i. — Gi), G =7, B,

~ Z B ~2 = Z'yl“ - i
where G; = M , zzzzaa,z,)/l— [ija Y_/—%:y;

(3) When variances are unknown, shrinkage estimator of variance,

N 2 1 L4
Gl=—F—— S, Sli=—— ) (- Bi-G)+5

I Vs Vi ,
1+4,/1+4 52, il +a |
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Advantages of Our Approach Benefits of fitting the variances
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Bensfitsof fitting the variances
Benefits of Fitting o?

@ Tolerance to model/error model misspecification.
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Benefits of Fitting o?

@ Tolerance to model/error model misspecification.
e Pitfalls of assuming ‘known' variances:

e Overly optimistic ‘known variances’
= overly narrow confidence intervals

= possible false discoveries
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Benefis o fiting the varances
Benefits of Fitting o?

@ Tolerance to model/error model misspecification.
e Pitfalls of assuming ‘known' variances:
e Overly optimistic ‘known variances’
= overly narrow confidence intervals
= possible false discoveries
e ‘known variances’ > true variability

= noninformative results
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Advantages of Our Approach Extentions to handle outliers
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el
Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?
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el
Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?

yii | Bi, Gj, &

Zij
B;

Meng, Siemiginowska, Kashyap
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el
Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?

o2

Z;
2 V&

Zjj P N(0, 02),

B "X N(bi,7?).

yii | Bi, Gj, &

d . .o .
If §,Jm~epx,/, i.e. independent chi-squared distributions, the error term

Zjj/+/¢&jj follows independent student-t distributions, i.e.
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Advantages of Our Approach Extentions to handle outliers

A Numerical Example with Outliers

Simulation: N =10,M =40, G; = —1and G; =3,j > 1.
Asymptotic variance of log-counts: e~8=% = outliers.
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Advantages of Our Approach Extentions to handle outliers

A Numerical Example with Outliers

Simulation: N =10, M =40, G; = —1 and G; =3,/ > 1.
Asymptotic variance of log-counts: e~8=% = outliers.
i —Bi— G +05x w?/§;

Ry =
~ ) I%j 21/2
gi “/f;j/

ﬁU:y,,-—B,—c:j+o.5><&,?
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Advantages of Our Approach Extentions to handle outliers

A Numerical Example with Outliers

Simulation: N =10,M =40, Gy = —1and G; =3,j > 1.

Asymptotic variance of log-counts: e~8=% = outliers.
s yi—Bi—G+05x87 o y;i—Bi— G405 xK/E;
Rij = 5 7RI'J' = 21/2
i H/ i
6 Standardized Residuals (Log-Normal Model)
.
4 . .
2 ® v
0 : " . N “ o n N
-2 o .
-4
=6 Instruments "
6 Standardized Residuals (Log-t Model)
4
2 L] -
0 ° " R o v R
S ‘ [ 3
-4
-6

Instruments
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el
Coverage Properties With Outliers, Misspecification

Poisson

Coverage Probability

Length of Interval

Model Para. log-Normal log-t log-Normal log-t

N =10 B [0.941, 0.959] | [0.971, 0.975] | 0.067+0.005 | 0.073 =+ 0.002
N =10 G 0.399 0.700 0.090+ 0.015 | 0.182+0.045
N=10 | Gum 0.967, 0.977 0.996, 0.999 0.077+0.003 0.104+£0.002
N =40 B 0.953, 0.969 0.993, 0.998 0.041+0.007 0.050+0.001
N =40 G 0.398 0.686 0.045+0.003 0.093+0.013
N =40 | Guxm | [0.965,0.977] [0.996,0.999] 0.038+0.001 0.051+0.001

Table 1: M = 40. Coverage of nominal 95% posterior intervals calculated from
2000 datasets simulated under a Poisson model. The intervals in columns 3 and 4
give the smallest and largest coverage observed for the corresponding parameter.
The last two columns give the lengths of nominal 95% intervals in the format:
mean =+ standard deviation.
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Advantages of Our Approach Results from Astronomy Data
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Resuls from Astronomy Data
Numerical Results (E0102)

Recap: Supernova remnant E0102.

Four sources are four spectral lines in E0102.
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Results from Astronomy Data
Estimates of B; = log A; (M = 2 each panel)

0.15
0.10

[
Bpptte mM””Mw

-0.10
~0.20
~0.25
RGS1 MOS1 MOS2 pn ACIS-S3  ACIS-I13 HETG XISO XIS1 X152 XIS3 XRT-WT XRT-PC
0.15 Ne
0.10

- 1L L o g
bt g

-0.10

-0.15 {

—-0.20

RGS1 MOS1 MOS2 pn ACIS-S3 ACIS-I3  HETG XISO XIs1 XIs2 XIS3  XRT-WT XRT-PC

@ Adjusted so that default effective area, b; = loga; = 0.
@ 95% posterior intervals (black:7 = 0.05; blue: 7 = 0.025).
@ Some instruments systematically high, others low.
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Advantages of Our Approach Results from Astronomy Data

Prior Influence

Instrument Oxygen Neon
7=0.025 7=0.05|7=0.02 7=0.05

RGS1 0.570 0.205 0.063 0.016
MOS1 0.279 0.077 0.075 0.019
MOS2 0.355 0.065 0.077 0.017
pn 0.250 0.041 0.620 0.218
ACIS-S3 0.218 0.040 0.270 0.088
ACIS-I3 0.906 0.640 0.099 0.026
HETG 0.648 0.341 0.129 0.034
XISo 0.180 0.051 0.069 0.018
XIS1 0.298 0.078 0.071 0.019
XIS2 0.463 0.140 0.063 0.016
XIS3 0.772 0.364 0.062 0.018
XRT-WT 0.726 0.278 0.154 0.026
XRT-PC 0.934 0.235 0.906 0.017

Table 2: Proportion of prior influence, as defined by 1 — W;, for E0102 data.
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Resuls from Astronomy Data
Numerical Results (2XMM)

@ 2XMM catalog: used to generate large, well-defined samples of
various types of astrophysical objects; collected with the
XMM-Newton European Photon Imaging Cameras (EPIC).
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Resuls from Astronomy Data
Numerical Results (2XMM)

@ 2XMM catalog: used to generate large, well-defined samples of
various types of astrophysical objects; collected with the
XMM-Newton European Photon Imaging Cameras (EPIC).

@ Three EPIC instruments: the EPIC-pn, and the two EPIC-MOS
detectors (pn, MOS1, and MOS2).

@ Three datasets: hard (2.5 - 10.0 keV), medium (1.5 - 2.5 keV) and
soft (0.5 - 1.5 keV) energy bands. The three instruments (pn, MOS1
and MOS2) measured 41, 41, and 42 sources respectively in hard,
medium, and soft bands. Faint sources.
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Resuls from Astronomy Data
Numerical Results (2XMM)

s 01 Hard band Medium band Soft band
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Figure 3: Adjustments of the log-scale Effective Areas for hard band (left),
medium band (middle) and soft band (right) of the 2XMM datasets.
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Resuls from Astronomy Data
Numerical Results (XCAL)

o XCAL data: Bright active galactic nuclei from the XMM-Newton
cross-calibration sample.

o Observed in hard (n = 94), medium (n = 103), soft (n = 108) bands.

o Pileup: Image data are clipped to eliminate the regions affected by
pileup, determined using epatplot.

o Three detectors: MOS1, MOS2 and pn.

@ We fit our model and show results on
Sources: M=103 (in medium band).

The hard and soft bands data are fitted similarly — treating
hard/medium /soft band as three different data sets.
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Resuls from Astronomy Data
Numerical Results (XCAL): Calibration Concordance

315 PKS2155-304 34 3C120

-3.20 -35

-3.25 -3.6

-330 ‘z-;

-3.35 { i i {

-3.40 a0

-3.45 _a1

-3.50 -4.2

—355 pn MOSI  MOS2 7,-0.025 7-0.05 43 pn MOSI  MOS2 7,-0.025 7-0.05

_5.50 'MS0737.9+7441 225 _ PKS2155-304

_5.55 -2.30

-5.60 -2.35

ses ~2.40 { J
—2.45

-5.75 255

—5.80 J -2.60

—585 pn MOSI  MOS2 7,=0.025 7=0.05 —2.65 pn MOSI  MOS2 7,=0.025 7=0.05

4 out of 103 Sources in medium band. y-axis: G (log flux); vertical bars
(left 3 in each panel): mean + 2 s.d. based on observed fluxes, vertical
bars (right 2 in each panel): 95% posterior intervals based on our model.
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Advantages of Our Approach Results from Astronomy Data

Prior Influence

Data Name 7 = 0.025 7 = 0.05

pn mosl  mos2 pn mosl  mos2
hard band 2XMM 0.093 0.075 0.082 | 0.025 0.020 0.022

medium band 2XMM | 0.250 0.216 0.222 | 0.076 0.065 0.067
soft band 2XMM 0.093 0.075 0.069 | 0.025 0.020 0.018
hard band XCAL 0.010 0.019 0.031 | 0.003 0.005 0.008

medium band XCAL | 0.023 0.016 0.028 | 0.006 0.004 0.007
soft band XCAL 0.021 0.011 0.007 | 0.005 0.003 0.002

Table 3: Proportion of prior influence.
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Statistics
@ Multiplicative mean modeling:

log-Normal hierarchical model.

@ Shrinkage estimators.
© Bayesian computation: MCMC & Stan.

@ The potential pitfalls of assuming 'known' variances.

Astronomy

© Adjustments of effective areas of each instrument.

@ Calibration concordance.

v

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019 49 /51



Discussions: Ongoing and Future Work

@ Correlations among instruments.

e Estimated correlations based on theoretical simulations.

e Prior? Extra data? Uncertainty?
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Discussions: Ongoing and Future Work

@ Correlations among instruments.

e Estimated correlations based on theoretical simulations.

e Prior? Extra data? Uncertainty?

@ Robustness = Misspecified models.

Better quantification of prior influence.

Coverage properties when outliers exist.
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