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Calibration Concordance Problem (Example: E0102)

Supernova remnant E0102

Four sources correspond to four spectral lines in E0102
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Calibration Concordance Problem (Example: E0102)

Four spectral lines observed with 11 X-ray detectors

Main challenge – the data/instruments do not agree
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Introduction

Notation

N Instruments with true e↵ective area Ai , 1  i  N.

For each instrument i , we know estimated ai (⇡ Ai ) but not Ai .

M Sources with fluxes Fj , 1  j  M.

For each source j , Fj is unknown.

Photon counts cij : from measuring flux Fj with instrument i .

Lower cases: data / estimators.

Upper cases: parameter / estimand.
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Introduction

Calibration Concordance Problem

1 Astronomers’ Dilemma:

cij
ai

6=
ci 0j
ai 0

for i 6= i 0.

Di↵erent instruments give di↵erent estimated flux of the same object!

2 Scientific Question:

Are there systematic errors in ‘known’ e↵ective areas?

Can we derive properly adjusted e↵ective areas?

Can we unify estimates of the same flux with di↵erent instruments?
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Scientific and Statistical Models

Scientific and Statistical Models

Scientific Model

Multiplicative in original scale and additive on the log scale.

Counts = Exposure⇥ E↵ective Area⇥ Flux,

Cij = TijAiFj , , logCij = Bi + Gj ,

where log area = Bi = logAi , log flux = Gj = log Fj ; let Tij = 1.

Statistical Model

log counts yij = log cij � ↵ij = Bi + Gj + eij , eij
indep⇠ N (0,�2

ij);

where ↵ij = �0.5�2
ij to ensure E (cij) = Cij = AiFj .

Known Variances: �ij known.

Unknown Variances: �ij = �i unknown.
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Concordance Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area &flux &variance
indep⇠ Gaussian distribution,

yij | Bi , Gj , �2
i

indep⇠ N
�
Bi + Gj , �2

i

�
,

Bi
indep⇠ N(bi , ⌧2i ),

Gj
indep⇠ flat prior,

If variance unknown: �2
i

indep⇠ Inv-Gamma(dfg , �g ).

Setting the prior parameters.

1 bi = log ai , ⌧i are given by astronomers.

2 dfg ,�g are given based on the variability in data.
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Concordance Model

Posterior Propriety and Identifiability

Posterior Propriety. The posterior is proper if each source is measured by
at least one instrument, i.e., |Ij | � 1 for all 1  j  M.

Identifiability

⌧2i = 1: same posteriors with {Bi ,Gj} and {Bi + �,Gj � �};

the condition number of ⌦(�2) (conditional variance of B,G ) is

�max(⌦(�2))

�min(⌦(�2))
� u>⌦(�2) u

v>⌦(�2) v
= 1 +

4
PN

i=1 |Ji |�
�2
iPN

i=1 ⌧
�2
i

, (1)

where u = (1N , 1M)> and v = (1N ,�1M)>.

{⌧2i } >> {�2
i }: elongated posterior contours.

Alternative: setting B1 = 0 or ⌧1 = 0.
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Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Gibbs Sampling: update parameters one-at-a-time.

Block Gibbs Sampling: update vectors of parameters.

The joint distribution of the Bi and Gj is Gaussian.

Hamiltonian Monte Carlo (HMC) – Stan package.

Highly correlated parameters, high-dim parameter space.
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Advantages of Our Approach Multiplicative Shrinkages

Shrinkage Estimators: Known Fluxes and Errors

Hierarchical model ) Shrinkage estimators (weighted averages of evidence
from ’Prior’ and evidence from ’Data’).

(1) When fluxes and variances are known,

Original Scale

Âi = aWi
i

h
(c̃i· f̃

�1)e�
2
i /2

i1�Wi
,

where

c̃i· =
Y

j

c1/Mij , f̃ =
Y

j

f 1/Mj

are geometric means.

Log-Scale

B̂i = Wibi + (1�Wi )(ȳi· � Ḡ),

where

Ḡ =

P
j gj

M
, ȳi· =

P
j yij

M

are arithmatic means.

The ‘weights’, Wi =
⌧�2
i

⌧�2
i +M��2

i

, represents the direct information in bi

relative to indirect information in fluxes.
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Advantages of Our Approach Multiplicative Shrinkages

Shrinkage Estimators: Known Errors

(2) When fluxes are unknown and variances are known,

B̂i = Wibi + (1�Wi )(ȳi · � Ḡi ), Ĝj = ȳ·j � B̄ ,

where Ḡi =
P

j Ĝj

M , B̄ =
P

i B̂i�
�2
iP

i �
�2
i

, ȳi · =
P

j yij
M , ȳ·j =

P
i yij�

�2
iP

i �
�2
i

.

(3) When variances are unknown, shrinkage estimator of variance,

�̂2
i =

2

1 +
q

1 + S2
y ,i

S2
y ,i , S2

y ,i =
1

|Ji |+ ↵

2

4
X

j2Ji

(yij � B̂i � Ĝj)
2 + �

3

5
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2 + �

3

5

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019 32 / 51



Advantages of Our Approach Benefits of fitting the variances

1 Introduction

2 Scientific and Statistical Models

3 Concordance Model

4 Advantages of Our Approach
Multiplicative Shrinkages
Benefits of fitting the variances
Extentions to handle outliers
Results from Astronomy Data

5 Summary

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019 33 / 51



Advantages of Our Approach Benefits of fitting the variances

Benefits of Fitting �2
i

Tolerance to model/error model misspecification.

Pitfalls of assuming ‘known’ variances:

Overly optimistic ‘known variances’

) overly narrow confidence intervals

) possible false discoveries

‘known variances’ � true variability

) noninformative results
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Advantages of Our Approach Extentions to handle outliers

Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?

yij | Bi , Gj , ⇠ij = � �2

2⇠ij
+ Bi + Gj +

Zijp
⇠ij

,

Zij
indep⇠ N(0,�2),

Bi
indep⇠ N(bi , ⌧

2
i ).

If ⇠ij
indep⇠ �2

⌫ , i.e. independent chi-squared distributions, the error term

Zij/
p
⇠ij follows independent student-t distributions, i.e.

Zijp
⇠ij

indep⇠ �p
⌫
t⌫ .
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Advantages of Our Approach Extentions to handle outliers

A Numerical Example with Outliers

Simulation: N = 10,M = 40, G1 = �1 and Gj = 3, j > 1.
Asymptotic variance of log-counts: e�Bi�Gj ) outliers.

R̂ij =
yij � B̂i � Ĝj + 0.5⇥ �̂2

i

�̂i
, R̂ij =

yij � B̂i � Ĝj + 0.5⇥ 2/⇠̂ij

/⇠̂1/2ij
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Advantages of Our Approach Extentions to handle outliers

Coverage Properties With Outliers, Misspecification

Poisson
Para.

Coverage Probability Length of Interval
Model log-Normal log-t log-Normal log-t
N = 10 B [0.941, 0.959] [0.971, 0.975] 0.067±0.005 0.073 ± 0.002
N = 10 G1 0.399 0.700 0.090± 0.015 0.182±0.045
N = 10 G2:M [0.967, 0.977] [0.996, 0.999] 0.077±0.003 0.104±0.002
N = 40 B [0.953, 0.969] [0.993, 0.998] 0.041±0.007 0.050±0.001
N = 40 G1 0.398 0.686 0.045±0.003 0.093±0.013
N = 40 G2:M [0.965,0.977] [0.996,0.999] 0.038±0.001 0.051±0.001

Table 1: M = 40. Coverage of nominal 95% posterior intervals calculated from
2000 datasets simulated under a Poisson model. The intervals in columns 3 and 4
give the smallest and largest coverage observed for the corresponding parameter.
The last two columns give the lengths of nominal 95% intervals in the format:
mean ± standard deviation.
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Advantages of Our Approach Results from Astronomy Data

Numerical Results (E0102)

Recap: Supernova remnant E0102.

Four sources are four spectral lines in E0102.
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Advantages of Our Approach Results from Astronomy Data

Estimates of Bi = logAi (M = 2 each panel)

Adjusted so that default e↵ective area, bi = log ai = 0.
95% posterior intervals (black:⌧ = 0.05; blue: ⌧ = 0.025).
Some instruments systematically high, others low.

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019 41 / 51



Advantages of Our Approach Results from Astronomy Data

Prior Influence

Instrument Oxygen Neon
⌧ = 0.025 ⌧ = 0.05 ⌧ = 0.025 ⌧ = 0.05

RGS1 0.570 0.205 0.063 0.016
MOS1 0.279 0.077 0.075 0.019
MOS2 0.355 0.065 0.077 0.017
pn 0.250 0.041 0.620 0.218

ACIS-S3 0.218 0.040 0.270 0.088
ACIS-I3 0.906 0.640 0.099 0.026
HETG 0.648 0.341 0.129 0.034
XIS0 0.180 0.051 0.069 0.018
XIS1 0.298 0.078 0.071 0.019
XIS2 0.463 0.140 0.063 0.016
XIS3 0.772 0.364 0.062 0.018

XRT-WT 0.726 0.278 0.154 0.026
XRT-PC 0.934 0.235 0.906 0.017

Table 2: Proportion of prior influence, as defined by 1�Wi , for E0102 data.
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Advantages of Our Approach Results from Astronomy Data

Numerical Results (2XMM)

2XMM catalog: used to generate large, well-defined samples of
various types of astrophysical objects; collected with the
XMM-Newton European Photon Imaging Cameras (EPIC).

Three EPIC instruments: the EPIC-pn, and the two EPIC-MOS
detectors (pn, MOS1, and MOS2).

Three datasets: hard (2.5 - 10.0 keV), medium (1.5 - 2.5 keV) and
soft (0.5 - 1.5 keV) energy bands. The three instruments (pn, MOS1
and MOS2) measured 41, 41, and 42 sources respectively in hard,
medium, and soft bands. Faint sources.
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Advantages of Our Approach Results from Astronomy Data

Numerical Results (2XMM)

Figure 3: Adjustments of the log-scale E↵ective Areas for hard band (left),
medium band (middle) and soft band (right) of the 2XMM datasets.
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Advantages of Our Approach Results from Astronomy Data

Numerical Results (XCAL)

XCAL data: Bright active galactic nuclei from the XMM-Newton
cross-calibration sample.

Observed in hard (n = 94), medium (n = 103), soft (n = 108) bands.

Pileup: Image data are clipped to eliminate the regions a↵ected by
pileup, determined using epatplot.

Three detectors: MOS1, MOS2 and pn.

We fit our model and show results on

Sources: M=103 (in medium band).

The hard and soft bands data are fitted similarly – treating
hard/medium/soft band as three di↵erent data sets.

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019 45 / 51



Advantages of Our Approach Results from Astronomy Data

Numerical Results (XCAL): Calibration Concordance

4 out of 103 Sources in medium band. y-axis: G (log flux); vertical bars
(left 3 in each panel): mean ± 2 s.d. based on observed fluxes, vertical
bars (right 2 in each panel): 95% posterior intervals based on our model.
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Advantages of Our Approach Results from Astronomy Data

Prior Influence

Data Name ⌧i = 0.025 ⌧i = 0.05
pn mos1 mos2 pn mos1 mos2

hard band 2XMM 0.093 0.075 0.082 0.025 0.020 0.022
medium band 2XMM 0.250 0.216 0.222 0.076 0.065 0.067
soft band 2XMM 0.093 0.075 0.069 0.025 0.020 0.018
hard band XCAL 0.010 0.019 0.031 0.003 0.005 0.008

medium band XCAL 0.023 0.016 0.028 0.006 0.004 0.007
soft band XCAL 0.021 0.011 0.007 0.005 0.003 0.002

Table 3: Proportion of prior influence.
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Summary

Summary

Statistics
1 Multiplicative mean modeling:

log-Normal hierarchical model.

2 Shrinkage estimators.

3 Bayesian computation: MCMC & Stan.

4 The potential pitfalls of assuming ’known’ variances.

Astronomy

1 Adjustments of e↵ective areas of each instrument.

2 Calibration concordance.

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019 49 / 51



Summary

Summary

Statistics
1 Multiplicative mean modeling:

log-Normal hierarchical model.

2 Shrinkage estimators.

3 Bayesian computation: MCMC & Stan.

4 The potential pitfalls of assuming ’known’ variances.

Astronomy

1 Adjustments of e↵ective areas of each instrument.

2 Calibration concordance.

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019 49 / 51



Summary

Summary

Statistics
1 Multiplicative mean modeling:

log-Normal hierarchical model.

2 Shrinkage estimators.

3 Bayesian computation: MCMC & Stan.

4 The potential pitfalls of assuming ’known’ variances.

Astronomy

1 Adjustments of e↵ective areas of each instrument.

2 Calibration concordance.

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019 49 / 51



Summary

Summary

Statistics
1 Multiplicative mean modeling:

log-Normal hierarchical model.

2 Shrinkage estimators.

3 Bayesian computation: MCMC & Stan.

4 The potential pitfalls of assuming ’known’ variances.

Astronomy

1 Adjustments of e↵ective areas of each instrument.

2 Calibration concordance.

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019 49 / 51



Summary

Summary

Statistics
1 Multiplicative mean modeling:

log-Normal hierarchical model.

2 Shrinkage estimators.

3 Bayesian computation: MCMC & Stan.

4 The potential pitfalls of assuming ’known’ variances.

Astronomy

1 Adjustments of e↵ective areas of each instrument.

2 Calibration concordance.

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019 49 / 51



Summary

Summary

Statistics
1 Multiplicative mean modeling:

log-Normal hierarchical model.

2 Shrinkage estimators.

3 Bayesian computation: MCMC & Stan.

4 The potential pitfalls of assuming ’known’ variances.

Astronomy

1 Adjustments of e↵ective areas of each instrument.

2 Calibration concordance.

Meng, Siemiginowska, Kashyap Future of Astrostatistics October 29, 2019 49 / 51



Summary

Discussions: Ongoing and Future Work

Correlations among instruments.

Estimated correlations based on theoretical simulations.

Prior? Extra data? Uncertainty?

Robustness ) Misspecified models.

Better quantification of prior influence.

Coverage properties when outliers exist.
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