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LARLY MORPHOLOGY STUDIES

o Galaxy classification by morphological type is as old as the concept of "galaxy"
see "Great Debate" - Shapley vs. Curtis, ~1920

o The oldest excercise is to arrange galaxies according to a "sequence”
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o The underlying idea is that there is a continuity — evolution ?



(OSMICEVOLUTION
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o Hubble was wrong, but not so much ...
& Galaxy morphology changes in time

Today
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& Galaxies progressively smaller, more irregular and more compact with redshift z



MORPHOLOGY MODIFIERS

 The evolutionary transition between types is NOT linear
w Different processes / conditions simultaneusly affect the morphology of a galaxy:
» Environment (nurture)
Interactions and mergers, gas stripping
» Secular evolution (nature)
Internal processes, e.g.: f;
- conversion of gas into stars (efficiency mostly scales with mass) Q@
- migration of stars (e.qg. through the bar towards the bulge)

+ Feedback processes

Regulation of star-formation by super-novae and active galactic nucleii

— LET'S SEEA'FFEW EVIDENCES



& Morphology relates to density
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GAS STRIPPIN(

& Galaxies infalling into a cluster lose gas due to "ram-pressure”
(e.g. see Jellyfish galaxies)
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[Gullieuszik 2017, GASP]

3D visualization example:
https://web.oapd.inaf.it/gasp/jw100. html




GALAXY INTERACTIONS
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& Galaxy interactions (fly-bys / mergers) disturb morphologies in countless ways
(e.g. see Arp catalogue of "peculiar" galaxies)

[STScl & NASA]



MORPHOLOGY - SECULAR EVOLUTION

& Morphology relates to star-formation activity
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& The correlation goes both ways:

» new stars alter galaxy appearance
formation of bulge stabilizes disk and reduces SF
(see "Morphological quenching” - Martig 2009)



MORPHOLOGY - FEEDBACK PROCESSES
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& Feedback from strong episodic star-formation and Active Galactic Nucleii (AGNSs)
regulate gas concentration (the source of new stars)

» Strong Super-Nova winds can  » AGN jets can prevent the infall
remove gas from the galaxy of new gas

[Dietmar & Torsten 2011] [ESO]



STUDYING MORPHOLOGY = STUDYING GALAXY EVOLUTION
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& Galaxy morphology is a fundamental tool to study galaxy evolution
& Even spectral information is now integrated w/ spatial info N

— development of IFUs '--“,?f:.‘ )
(e.9. MANGA survey) 5 008880 s s
R

& Morphology at different wavelengths provide info about emission processes
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w One common method to define morphology is the / disk decomposition
via fit to parametric functions
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& This can be done in 1D or 2D

& Allows to calculatea B./.D ratio
— Hubble sequence as a B / D sequence

[Peng 2010]



[HE DRAMA OF BEST HT MODEL

s Problem with parametric modelling = choice of best-fit components

WHICH PARAMETRIC MODEL BEST REPRESENTS THE DATA ?

w likelihood (e.g. X?) smaller for models with more parameters — risk of overfitting
W Several approaches in the literature:

» F-test
Simard (2011): fit of 1.2 milion SDSS galaxies

Shortcome: Models must be nested
» Likelihood penalizers - e.g. Bayesian Information Criterion (BIC)

Shortcome: Likelihood over-penalized if large number of model parameters
(e.g. Andrae 2010)



@ In Bonfini 2019, MNRAS, sub. we modelled SFRS sample = 6 models each

Sémsic + psfAgn

Sérsic + exDizk

seémic + psfAgm + Disk

o Fit residuals seems identical

& We used the
(Vaughan 2003)

2 2 2
Oxs =0 objects — Usky

’ (0_5}‘\» ==

No bjects

Variance in the residuals at the
area of an object, after removing
variations due to the background

' The best-fit model automatically
determines & / D decomposition



NEW CHALLENGES

» Deeper surveys show extended » Incoming surveys will observe
morphologies (more on this later...) orders of magnitudes more galaxies

Stephan's: Qlfntef, .. !
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= NECESSITY FOR AUTOMATION IS OUT OF QUESTION !

& Machine Learning (ML) techniques are a promising solution

.

& Supervised ML need labels = Galaxy Zoo (citizen science) was a milestone



. AND SUDDENLY, DEEP [EARNING !

& ~2014 and on = Deep Learning explodes in galaxy morphology
(To be fair ... SExtractor already implemented Neural Networks - Bertin, 2010)

& Mostly based on Convolutional Neural Networks (CNNs)

Pooling Flattening Dense Layers

> , ion filter =» Scan the image to detect different features

» Pooling = Reduce dimensionality to increase abstraction
» Flattening = Encodes features into variables

» Dense Layers = Feature classifier

> Many papers, list is growing = presenting a few ...



5055 (LASSIFICATION

& Dieleman (2015) = calculate probabilities for the 37 Galaxy Zoo possible answers
» fraining: classification of 61,578 JPEG images from SDSS with GZ labels
» architecture: "standard CNN"

[Willett 2013] [Dieleman 2015]

o Accuracy as high as 99% for some questions



(NN - TRANSHER LEARNING

@ Ackermann (2017) = identify mergers
» (training: classification of ~4000 JPEG images from SDSS with GZ labels
» architecture: CNN with "transfer learning”

& Transfer learning is used when few (e.g. <10,000) examples are available

@ Merger sample created with this model reproduces expected mergers:
» mass function
» color distribution



DEEP LEARNING AND STRUCTURAL PARAMETERS

& Tuccillo (2017) = obtain structural parameters (e.g. effective radius, Sersic n)
» fraining: re-produce parameters used to generate artificial galaxies
» architecture: "standard" CNN

Performance ~ GALFIT ("industry standard" for parametric fitting)
ww Aragon-Calvo (2019) = obtain structural parameters via self-supervised learning

» fraining: re-produce parameters used to generate artificial galaxies
» architecture: "semantic autoencoder”

encoder bottleneck output @

[Aragon-Calvo 2019]
Performance - Model undistinguishable from input !



GALAXY SUB-STRUCTURIES

\.

o Deep imaging is revealing that galaxies present fine structures
o These are the imprint of “recent” mergers

TAILS SREAMS SHELLS

» P

[MATLAS collaboration]

o Different features are associated with different interaction events
(major/minor, gas-rich/gas-poor, etc.)

.



GALAXY SUB-STRUCTURES: FINE STRUCTURES

.

& Machine Learning proven to be efficient in classifying global morphology, i.e.:
elliptical vs. spiral

o Classifying individual fine structure features is way more challenging
(e.g. Walmsley 2018; 76% completeness)

il

= THESE FEATURES MUST BE PROPERLY CHARA C@RIZED 3
BEFORE APPLYING MACHINE LEARNING



FINE STRUCTURES - TIDAL TAILS

o Origin:

K major mergers, mostly disrupted disk

o Features:
» long and diffuse
» same color as parent disk
» relatively faint (u < 25 mag/arcsec?)

: > "< NGC 4038 .

[Robert Gendler]



FINE STRUCTURES - STREAMS

o Origin:

disrupted satellites

o Features:
» narrow and curved
» blue colors (g-r = 0.8)
» very faint
(M < 26 mag/arcsec?)

[Martinez-Delgado et al. 2015]
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HINE STRUCTURES - SHELLS

& Origin:
intermediate/major dry (gas-poor) mergers
(Prieur 1990; but see Peirani 2010 for wet mergers)

o Features:
» concentric arcs
» red colors (no star-formation)
» relatively bright (u < 23 mag/arcsec?)

SHELLS




TIMESCALE COMPARISON - HINE STRUCTURES

.

o Disappearance of fine structres strongly depends on the type

TAILS SREAMS SHELLS
| S 72 AT

. -

1-2 Gyr 1-2 Gyr

o Values from idealized and cosmological simulations
e.qg ILLUSTRIS (Pop et al. 2017) -



FINE STRUCTURES AS TIME PROXY

o Fine structures trace time elapsed from the last interaction event
= can be used as time proxy

o Extremely valuable for Early-Type Galaxies (ETGs) - uniform stellar populations

In Bonfini 2018, we used them to "time" the evolution of cores

«= cores are central deficit of stars
* due to the action of a
* Super Massive Black Hole (SMBH) binary



CONNECTING FINE STRUCTURES WITH CORES

& Fine structures trace time elapsed from the last interaction event
= can be used as time proxy

& Extremely valuable for Early-Type Galaxies (ETGs) - uniform stellar populations

In Bonfini 2018, we used them to "time" the evolution of cores

& Following the merger which created an ETG:

» stellar orbit relax and fine structure features fade away
» core progressively excavated by SMBH binary




RESULTS

fit uncertainty

linear fit

significant fine structure
relaxed morphology |
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[Cartoon adapted from Bonfini 2018]




NEXT STEP

o Unfortunately, up to now fine structures only semi-qualitatively classified
(i.e. "by eye")

= NEED FOR AN AUTOMATED CLASSIFICATION
o We are working on it ! How ?
» Sample: deep exposure ETG data
» Define an automated metric to estimate fine structures:
- robust

- independent of image depth
- able to distinguish between gas-rich/poor mergers

» Calibrate fine structure vs. age from merger via cosmological simulations



NEXT STEP — EXTREMELY DEEP IMAGING DATA ]

i, ~ 28 = 31 mag/arcsec?!l

MATLAS VEGAS

Mass Assembly of early-Type VST survey of Early-type GAlaxieS
Gal Axies with their fine Structures

e P.I: E. lodice g%
/ (INAF — Osservatorio
Astronomico di ~
- Capodimonte)

- P.I: P-A. Duc
= (Observatoire
Astronomique de
Strasbourg)




NEXT STEP - DETECTION ROUTINE

o Automated detection of shells in our deep images

lhGe 3023 ©
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DETECTION ROUTINE

\.

o Model subtraction + edge detection

fNGe 3923




DETECTION ROUTINE J

\.

o Clustering analysis

JNGC 3925




o In polar coordinates — shells are vertical (further screening if necessary)

& Now trivial to automatically get:
» shells number
» shells radii
» shells angular apertures
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(OUPLE MORE EXAMP




Feature #1 Feature #1 Profiles

»

Azimutal a

Feature profile

B The Filament Trait-Evaluated
"8 Reconstruction

Georgia Panopoulou

CALTECH, postdoc
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= TAKE-HOME POINTS =

& Morphology is still a fundamental tool for galaxy evolution
o Machine Learning (ML) provides fast / efficient classifiers

& Sub-structures represent the next challenge

BUT
ML not applicable yet because poorly characterized
o Our work on fine structures will provide:

» automated parametrization
» fundamental input to design dedicated ML networks



THANK YOU ! (FoR NOT FALLING ASLEEP) ]




