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Images to Catalogs

unWISE: Schlafly et al. (2019)

Point Spread 

Function (PSF)



So…photometry?

• Most of my work focuses on using photometry from large 
surveys.



So…photometry?

• Most of my work focuses on using photometry from large 
surveys.

“Big Data”-oriented work



So…photometry?

• Most of my work focuses on using photometry from large 
surveys.

• Understanding the data is important.

“Big Data”-oriented work



So…photometry?

• Most of my work focuses on using photometry from large 
surveys.

• Understanding the data is important.

• Small effects can add up over large populations.

“Big Data”-oriented work
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• The Finkbeiner group built 
up PCAT (Probabilistic 
Cataloging): 
• sampling from the 

transdimensional space of 
all possible catalogs

Daylan, Portillo, & Finkbeiner (2016)

How well can you model a single source?
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• Estimated fluxes are biased.
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First reaction:
• No surprise: photometry is hard.

• Model mismatch (PSF, source)

• Blending issues

• Background estimation

• Unresolved sources

• Detection limits/selection effects

• Etc.
unWISE: Schlafly et al. (2019)

This is true even with 

perfect models and data!
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Maximum-Likelihood Solution

• Single, isolated point source in one band with PSF known and 
Gaussian background noise.

Likelihood
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Starting Point

• Normal log-likelihood:

• Background and error:

Normalization Residual

“Naïve” error
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Biases in PSF Photometry

• While the MLE is consistent (unbiased as N  infinity), not 
necessarily unbiased.

• Recast the problem with random variables:

Standard Normal 

Random Numbers
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Biases in PSF Photometry: General Case

• In general, if we knew the truth and simulated the data, we’d 
end up with:



Biases in PSF Photometry: General Case

• When you introduce parameters, they “absorb” some of the 
noise:

• The variation in the parameters contains the missing noise:
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Biases in PSF Photometry: w/o Background

• We can exploit this to relate our two estimators in distribution:

MLE residual with position free MLE residual with position fixed

𝜒2(dof = 2)
random variable

Equal in distribution
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• We can use this to get a first-order bias correction:

• Applying this correction increases the variance:

• This is an example of the bias-variance trade-off.
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Biases in PSF Photometry

• Position unknown, background unknown

∼ SNReff
−2

10-sigma source:

• Flux: +1% bias.

• Variance: -0.1% bias.

Background variable
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Galaxy
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Biases in Extended Source Photometry

Flux Bias Error Bias

Ignoring covariances

underestimates errors.

• More parameters, more covariances, larger effective area

2

Shape parameters add 

covariances.
Extended shape impedes 

background estimation.

Agal+psf

Extra degrees of freedom 

allows fit to chase noise.

𝑝 = 3 → 6 − 10
Shape parameters soak 

up noise.
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Biases in Extended Source Photometry

• More parameters, more covariances, larger effective area

∼
5

2
SNR−2 ∼

5

2
SNReff

−2

1%  >2.5% bias @ 10-sigma



Impacts

Asgari et al. (2019)

• Emerging tension in large-scale clustering between Cosmic 
Microwave Background (CMB) and weak lensing.



Impacts

• Offsets due to differences in inferred redshift (distance) distribution of 
galaxies from photometry.
• Flux overestimated  slightly closer  smaller redshift  population bias.

Joudaki et al. (2019)
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Biases in Forced Multi-band Photometry

• Detect in one band, fix position, force photometry in others

∼ 2 SNR−2

Star @ 10-sigma:

• 1% flux bias 

• 0.02 mag color bias.

Galaxy @ 10-sigma:

• 2.5% flux bias 

• 0.05 mag color bias.
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Bright Faint
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Biases in Joint Multi-band Photometry

∼ SNRtot
−2 ∼ SNRtot

−2



Biases in Joint Multi-band Photometry



Biases in Multi-band Photometry

Forced 
Photometry

Positive bias in detection band.

Negative bias in forced bands.

Doubly-biased colors.

Positive bias evenly spread 

across all bands.

Unbiased colors.

Joint 
Photometry
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Proof?

• Two test cases:

• HSC SynPipe (mock data, real pipeline)

• SDSS Stripe 82 (real data, real pipeline)



Mock Data: HSC SynPipe

Credit: Alexie Leauthaud
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• Fake object pipeline: inject fake
objects into real images drawn from 
realistic SED distributions.

• “Forced” photometry: detect in i-
band, force in others

• PSF magnitudes
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• Fake object pipeline: inject fake objects into real images drawn 
from realistic SED distributions.

• “Forced” photometry: detect in i-band, force in others

• PSF magnitudes ???

Results look like single-band fits!



The Devil’s in the Details:
Photometric Biases in Modern Surveys

Stephen Portillo1,2,* and Josh Speagle1,* and Doug Finkbeiner1

1Harvard U., 2DIRAC (U. of Washington)

*Equal contribution

Portillo, Speagle, & Finkbeiner (PSF) subm., arxiv:1902.02374

https://arxiv.org/abs/1902.02374


The Devil’s in the Details:
Photometric Biases in Modern Surveys

Stephen Portillo1,2,* and Josh Speagle1,* and Doug Finkbeiner1

1Harvard U., 2DIRAC (U. of Washington)

*Equal contribution

Portillo, Speagle, & Finkbeiner (PSF) subm., arxiv:1902.02374

https://arxiv.org/abs/1902.02374


Mock Data: HSC SynPipe

• Fake object pipeline: inject fake objects into real images drawn 
from realistic SED distributions.

• “Forced” photometry: detect in i-band, force in others

• PSF magnitudes ???

Results look like single-band fits!



Mock Data: HSC SynPipe

• Fake object pipeline: inject fake objects into real images drawn 
from realistic SED distributions.

• “Forced” photometry: detect in i-band, force in others

• PSF magnitudes ???

Results look like single-band fits!

Implementation-specific effect:

• HSC pipeline allows for “local 

re-centering” of forced position.

• Enough to undo forcing effect!



Real Data: Stripe 82

cfht.hawaii.org
sdss.org
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• Repeated imaging: compare catalog computed from a “deep 
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• PSF magnitudes
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Real Data: Stripe 82

• Repeated imaging: compare catalog computed from a “deep 
stack” of all images (“truth”) vs individual runs (“realization”)

• “Forced” photometry: detect in r-band, force in others

• PSF magnitudes

• HSC pipeline built off of SDSS pipeline. 

Same implementation and effect.

• SDSS/HSC will also serve as basis for 

LSST pipeline.
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What about galaxies?

• Much more complicated:
• Models are known to have deficiencies matching real data.

• Models involve much more parameters.

• Many more algorithmic choices involved/taken when fitting.

• Recommend directly calibrating from pipeline tests.
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1. Apertures will “miss” flux in all cases, requiring “aperture corrections” 
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2. Apertures are still subject to centering bias.

3. SNR is lower due to much more background noise.

4. Estimate degrades (MLE improves) with larger area.

5. Unable to jointly model multiple images.

6. Less amenable to statistical analysis than MLE.



Cautionary note: Aperture photometry

• If we know that the MLE is biased and our models may 
be wrong, why not do something simple like aperture 
photometry?

1. Apertures will “miss” flux in all cases, requiring “aperture corrections” 
that dominate the error budget and are hard to estimate.

2. Apertures are still subject to centering bias.

3. SNR is lower due to much more background noise.

4. Estimate degrades (MLE improves) with larger area.

5. Unable to jointly model multiple images.

6. Less amenable to statistical analysis than MLE.

burro.case.edu

Has a purpose, but should be used judiciously!
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Summary

• MLE photometry has a bias that goes as SNR^-2.

• Proportional to number of parameters of fit: (p-1)/2

• Naïve errors underestimated due to ignored covariances.

• Mild effect for stars (1% @ SNR=10), more severe for galaxies 
(>2.5% @ SNR=10).

• Forced photometry is dangerous. Joint is better.

• Behavior is sensitive to implementation – talk to pipeline teams!

• These biases likely present in many modern photometry catalogs.


