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Modulated means slowly time-varying

e Target: variable stars characterized by time-modulated
i.e. slowly time-varying parameters: mean, amplitude, period and phase.

e Goals: modeling and forecasting light curves of these variable stars using time
series models.

e Variable stars

1) Periodic: Long-Period-Variable and Blazhko,
2) Non-periodic: Galaxies (AGN)



LPV stars: Miras

Average period of 100 to 1,000 days with large amplitudes of light variation of
more than 2.5 magnitudes visually and more than 1 magnitude in the infrared
wavelengths.

The period is a very important parameter as indicator of their size and
luminosity as well as their age, mode of pulsation and their overall evolution.

Research revealed important correlations between the period and
(i) amplitude, (ii) mass loss (iii) IR excess due to dust surrounding the star.

Period & shape of the light curve (Mattei, 1997):

- periods < 200 days: symmetrical light curves and smaller amplitudes;

- periods > 200 days: larger amplitudes & steeper rising branches of the curve;

- periods > 300 days: quite large amplitudes with standstills or humps in the
ascending branches of their light curves.



LPV stars: Extreme Miras

Miras at the ends of the ranges in periods and amplitudes

e V369 Cyg is an example of LPV star;

e the maximum amplitude is relatively high at up to 5 magnitudes.

Light curve for V369 Cyg

Light curve for V369 Cyg
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Left: all the observations. Right: 1,500 day interval centered around 1985 (the
star was well observed throughout a number of cycles). From AAVSO.


https://www.aavso.org/lpv-month-december-2018

LPV stars: Extreme Miras

Miras at the ends of the ranges in periods and amplitudes
e Mira LPV 32697 is another example of LPV star;
e its magnitude exhibits a (possibly quadratic) time-varying mean, as well as

time-varying amplitude and period.
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From OGLE.

Left: 616 observations. Right: Finding chart (60x60 arcsec).


http://ogledb.astrouw.edu.pl/~ogle/CVS/

The Blazhko effect: long-period modulation

It is a variation in period, amplitude or phase in RR Lyrae variable stars.
It was first observed by Blazhko (1907) in the star RW Draconis.

The amplitude-modulated pulsation of RR Lyrae stars has a strong periodic
component with an often observed variation on a longer time scale.

The RR Lyr’s primary period has shown small increases and decreases since
its discovery in 1901.

The Blazhko effect is a periodic amplitude and/or phase modulation shown
by some 20-30% of the galactic RRab stars.



The Blazhko effect: long-period modulation

These stars have pulsation periods of about half a day.

PAIX Magnitude

Pulsation phase PAIX-2454944

Chadid et al. (2014, Al, 148, 88)

DA

u]

8]
I
i

it



The Blazhko effect: long-period modulation

The amplitude variation is accompanied by phase changes of the same period.

PAIX Magnitude

Pulsation phase PAIX-2454944

Chadid et al. (2014, Al, 148, 88)
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The Blazhko effect: long-period modulation

The modulation can be anywhere between 10 and 700 days.

PAIX Magnitude

Pulsation phase PAIX-2454944

Chadid et al. (2014, Al, 148, 88)



The Blazhko effect: long-period modulation

Any correlation between the modulation and the fundamental period.

PAIX Magnitude

Pulsation phase PAIX-2454944

Chadid et al. (2014, Al, 148, 88)
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The Blazhko effect: long-period modulation

No regularity can be found in the changes of the primary period.

PAIX Magnitude

Pulsation phase PAIX-2454944

Chadid et al. (2014, Al, 148, 88)



The Blazhko effect: long-period modulation

Both amplitude and length of the secondary period seems to be variable.

PAIX Magnitude

Pulsation phase PAIX-2454944

Chadid et al. (2014, Al, 148, 88)



The Blazhko effect: long-period modulation

from Kolenberg (2006)
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The Blazhko effect: long-period modulation

from Kolenberg (2006)

Left-Top
e Combined RR Lyr V data folded with the main pulsation period fy = 1.76.

e The mean light curve is defined by the components of the fit, varying with
only fo and its 10 significant harmonics (up to 11 fy).

Left-Bottom

e Residuals after subtraction of the mean light curve.

There is an interval in the pulsation cycle (right after the phase of the so-called
bump), roughly ¢ = 0.72 — 0.82, during which the star’s intensity barely
changes over the Blazhko cycle.



The Blazhko effect: long-period modulation

from Kolenberg (2006)

Right

10 consecutive phase intervals in the Blazhko cycle of about 39 days, e.g.:
¥ =0.0—-0.1, v» = 0.1 — 0.2, etc., where

Blazhko phase ¥ = 0 is the phase of maximum Blazhko amplitude.

e Thick solid lines: pulsation light curves constructed from the data (dots)
falling into the 0.1 phase intervals of the Blazhko cycle.

e Full line: mean light curve derived from all data.

e Thin line: mean light curve over all Blazhko phase intervals.



The Blazhko effect: long-period modulation

from Kolenberg (2006)

Right

10 consecutive phase intervals in the Blazhko cycle of about 39 days, e.g.:
¥ =0.0—-0.1, v» = 0.1 — 0.2, etc., where

Blazhko phase ¥ = 0 is the phase of maximum Blazhko amplitude.

e Thick solid lines: pulsation light curves constructed from the data (dots)
falling into the 0.1 phase intervals of the Blazhko cycle.

e Full line: mean light curve derived from all data.

e Thin line: mean light curve over all Blazhko phase intervals.

Certain features in the light curve occur at specific phase intervals in the
Blazhko cycle. Studying their origin and modeling those changes can bring us
closer to understanding the modulation.



The Blazhko effect: long-period modulation

from Kolenberg (2006)

Right

10 consecutive phase intervals in the Blazhko cycle of about 39 days, e.g.:
¥ =0.0—-0.1, v» = 0.1 — 0.2, etc., where

Blazhko phase ¥ = 0 is the phase of maximum Blazhko amplitude.

e Thick solid lines: pulsation light curves constructed from the data (dots)
falling into the 0.1 phase intervals of the Blazhko cycle.

e Full line: mean light curve derived from all data.

e Thin line: mean light curve over all Blazhko phase intervals.

The strong amplitude and phase modulation in RR Lyr is accompanied by
changes in the shape (and position) of the bump, and the hump is only
observed at certain Blazhko phases.



The Blazhko effect: long-period modulation
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from Benk§ et al. (2018)




The Blazhko effect: long-period modulation

from Benké et al. (2018)

The amplitude modulation is fairly nonsinusoidal which is evident from the
envelopes of the corresponding light curves in the figure.

e V783 Cyg
Carefully investigating we detect small differences between consecutive cycles.

e V445 Lyr

— The light curve of the star shows strong and complicated amplitude changes.
— The parameters (periods, amplitudes and phases) are heavily varying.

e V450 Lyr

— The shape of the maxima curve of V450 Lyr suggests a strong beating
phenomenon between two modulation periods.

— The authors fit a quadratic function to the O-C diagram of this stars.



The Blazhko effect:

from Guggenberger et al. (2011)
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The Blazhko effect: long-period modulation

from Guggenberger et al. (2011)
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We observe strong changes in the Blazhko modulation, both in brightness and
O-C variations.



The Blazhko effect: long-period modulation

from Guggenberger et al. (2011)

Model fitted to the data of CoRoT ID 105288363

K

Ao + Z{Ak sin (27r(]€f0t + (pk))
k=1

ft)

+ Z B sm (2n[(kfo +mfy)t + gok(yl)]) + Z B<2) sin (27 ([(kfo — mfy)t + <p<2>])}

mn
m=1

+ Bosin (2n[fyt + ©5])
f5 is the Blazhko frequency,
Blgll) and B,(fl) are the amplitudes of the triplet components

B,(€12) and B,g) are the amplitudes of the quintuplet peaks on the higher and
lower sides of the main pulsation component

By is the amplitude of the Blazhko frequency itself.



The Blazhko effect: long-period modulation

from Guggenberger et al. (2011)

Model fitted to the data of CoRoT ID 105288363

K

Ao + Z{Ak sin (27r(]€f0t + (pk))
k=1

ft)

+ Z B sm (2n[(kfo +mfy)t + gok(yl)]) + Z B<2) sin (27 ([(kfo — mfy)t + <p<2>])}

mn
m=1

+ Bgsin (277[th + goB])

This is the standard method of fitting the light curves of Blazhko RR Lyrae
stars, assuming equidistant triplets, extended here to include also equidistant
quintuplets and the Blazhko frequency itself.



The Blazhko effect: long-period modulation

Benkd (2017)

Non-sinusoidally modulated model for the RR Lyrae light

m(t) = [ag + g™ (O{ao + D arsin[2rifot +¢; +ig" ()]}

i=1

where the modulation functions are

13
gM(t):Zaysin@ﬁjfmt—l—gpé”), M=Aor F.
j=1
fo and f,, are the main pulsation and the modulation frequencies,
a and ¢ are the Fourier amplitudes and phases, respectively.
The a()4 , ap are the zero point constants;
n and £,; are the number of terms in the finite Fourier sums.

A indicates the amplitude modulation (AM) and F means the frequency
modulation (FM).

(1)



The Blazhko effect: long-period modulation

Benkd (2017)

Non-sinusoidally modulated model for the RR Lyrae light

m(t) = lag +¢* (O{ao + ) avsinf2mifot + o +ig" (0]} (1)

i=1

where the modulation functions are

1594
gM(t):Zaysin@ﬁjfmt—l—gpé”), M=Aor F.
j=1

e Model (1) says that the Blazhko light curves are not modulated signals but
signals of a different and more complicated physical effect.

e These represent the non-sinusoidal nature of the light curves but they have no
physical meaning.



The Blazhko effect: long-period modulation

Benkd (2017)

Non-sinusoidally modulated model for the RR Lyrae light

m(t) = lag +¢* (O{ao + ) avsinf2mifot + o +ig" (0]} (1)

i=1

where the modulation functions are

1594
gM(t):Zaysin@ﬁjfmt—l—gpé”), M=Aor F.
j=1

e Though model (1) allows for time-varying parameters, the coefficients g(t)
follow a parametric specification.

e In contrast, we want to allow the coefficients to be fully non-parametric and
thus adaptive.
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Modulation

Continuous wave modulation can be divided into two sets:
e amplitude modulation (AM)
e angle modulation

— frequency modulation (PM)
— phase modulation (FM)
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Amplitude modulation

- Carrier wave c(t) = U sin(2rft + ¢.)
where U, f, and ¢, are the amplitude, frequency, and phase of the carrier
wave, respectively.

- Modulation signal U, (t): waveform (the message) to be transmitted

- Modulated signal

S
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UAIW(t) = [U




Amplitude modulation: Example 1

- Carrier wave c(t) = U.sin(2rf.t + ¢.)

- Modulation signal U, (t) = U#sin(2n f, t + ¢*)

m

- Modulated signal
Un (1) = [U + U sin@2nf t + ¢ sin(2r f 1+ 6,),
or equivalently, using
1 s

sin(a) sin(b) = 3[cos(a — b) — cos(a +b)] and sin(a) = cos(a — §)

UAM (t) = ch Sin(2ﬂ'f;t + ¢c)

U4 m

+ 2= [sin2r(f, = £) + (6 = 6, +3))]
U4 m

— = [sin(@n(f, + £) + (@2 + 6.+ 3)]



Amplitude modulation: Example 2

a generalization of Example 1

K

c(t) = a+ Z a, sin(2rk f,t + ¢,), (3)
k=1

U, (t) = Ulsin@2nf,t+¢?). (4)

Substituting equations (3) and (4) into (2) we have

UAsin(2rf, t + ¢)
U ()= |14 2= )]

K
a4, +> a sin@rkft+¢)|. (5
k=1

U

c

Ifwecall h=U "’f‘ /U, and using the same identities, expression (5) becomes

K

Ui (t) = 6, + > a, sin(2rkfyt + ¢,) + a,hsin(2nf, t + ¢;))
k=1

sin2r(kfy — f.)t + (8, — 6,) +7/2)

™
Il
-

]~

+
]~
ol L

sin2r(kf, + £t + (¢, + é) +7/2).

£
Il
—



Amplitude modulation: Example 3

Sama c(t) as in Example 2, and (2) is

c

q
OA + Z a:‘ sin(2mpf t + (b:‘), (6)

p=1

{1+

where a* =14 ¢™/U,, and a:‘ = a/U.. Substituting (3) and (6) into (2)

q K
U, @)= aOA + Za:l sin(2npf, t + (;5:1) a, + Zak sin2rkfit+ )| . (7)
p=1 k=1
Using sin(a) sin(b) as above, sin(a + 7/2) = cos(a), and sin(a — 7/2) = — cos(a),
ZZ sin(2n[kf, £ pf, ]tiqbkp)
p=0£k=0

with ¢ = ¢, + ¢ —7/2, ¢ = ¢, — ¢ +7/2, and ¢ = ¢, = 7/2.



Amplitude modulation: Example 3 (continued)

A more complicated form of the carrier wave is
ct) = U, sin(2mf,t + ¢,,) + U, cos(2mf,t + ¢7,). (8)

Using the basic trigonometrical identity sin(a) = cos(a — 5), equation (8) can
be seen as a sinusoidal wave with two harmonics, that is,

c(t) = U, sin@rf,t +6.,) + U, sinrf,t + ). 9)

where ¢, = ¢* + T. Substituting the equation (9) into (2) we have

UAM( ) |:1 + U;,,( :| Z U, sin 27chzt + ¢cz)

where U* is the amplitude of the non-modulated curve c(t).



Amplitude modulation: Example 4

Suppose U,, = U,, = U,, then the carrier wave (9) is given by
c(t) = U, sin(2rf,t + ¢.,) + U.sin(2m f,t + ¢.5)-

Using sin(a) + sin(b) = 2 cos(%52) sin(2$2),

c(t) = [2U, cos (27r e ;fC2)t 4 g¢°2 ) ] sin (27T e ;fcz)t + ¢°1;¢02>

[U, (t)=time—varying amplitude] average wave

If U, (t) = U*sin(2n f, t + ¢7), the modulated signal U, , (t) is as follows

U,y ) = [0 (8) + UW‘? sin(2nf,t + ¢7‘3)] sin <27r (aa ; fe2) t+ a1 ; Pez

or in form of equation (2) we have

Ui (1) = |1 + T, (%)

I

sm(27rf t+¢A :|

2
U, Z Sin(27 feit + Pei)
i—1

where U, (t) is the amplitude of the non-modulated curve c(t).

)

(10)
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Phase modulation

The phase modulation (PM) changes the phase angle of the carrier signal. We
assume the sinusoidal carrier wave to be

c(t) = U, sin(6/(1)), (11)

and O(t) = 2rf.t + ¢, represents the angle part of the function. Suppose that
the modulating is U, (¢), then ©(t) = 2nft + [¢, + U, (t)], and the modulated
signal is given by

Upn(t) = U sin(2r f.t + [¢. + U, (1)))-

The instantaneous frequency of the modulated signal, Upps(¢), is

10 = 200 _ o 4 2l (12)



Frequency modulation

The frequency modulation (FM) varies the carrier frequency using the
modulating signal U (t). Now, we assume that O(t) = 27 f(t)t + ¢,, where f(t)
is the instantaneous frequency which is modulated by the signal U_(t) as

f@®)=2nf + U, (t). (13)
From fundamental Theorem of Calculus, we can express (12) as
t
ot) = / f(r)dr.
0

Substituting (13) in the above expression we obtain

O(t) =2rft+ /t U, (r)dr.

0

Finally, using the same carrier wave (11), the frequency modulation signal is

U ) = Usinenft+ [ U, (s +0) (14)
0



Frequency modulation: Example 5
A simple case: fg U, (7)dr takes the form

t
/ U (r)dr = sin(2nf,t + oF).
0

Substituting (15) in (14), the modulated signal is

U, (t) =Usin(2rft+sin2rf t + X)) + 4.).



Examples 1 & 4 (AM) and 5 (FM)

yyyyyyyyyy
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Smoothly-varying parameters

Data:
random observed vector Y = (Y, Y,,..., Y, )
time vector t = (t,,t,,...,t,)

Modulation model
Y; = mit)) +Z{JH )cos(w,ti) + g, (ti)sin(w )} + X,,  i=1,...

smooth trend

smooth time-varying amplitudes

K number of harmonics
X =(X,,... ,XN)/ are values of a causal zero-mean ARMA (p,q) process

H(L)X, = 0(L)Z;, {Z;} ~WN(0,02),

i
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Estimation

e The basis matrix formed by B-splines

Bi(t1) DBa(t1) B, (t1)
Bi(ta) Ba(tz2) B, (t2)
B = | Bi(ts) Bal(ts) B, (ts)
Bl(tN) B2(tN) BJ(.tN)

of dimension N x J, where J depends on the number of knots and the degree
of the B-spline.

o m(ti) =37, o B (t)
o glk(tl) = Zj:l 5ijj (tz); k= ].7 e ,K

J
® gzk(ti> = Zj:l ,ijBj(ti)a k=1,....K



Estimation: splines regression

In matrix notation
m =Bea, g,, =Bg, and g,, = B~,, k=1,....K

C, = diag{cos(w,t1),...,cos(w,tn)}, k=1,...,.K
S, = diag{sin(w,t1),...,sin(w,tn)}, k=1,....K

Model for the expected value
E(Y) = B6,

B = [B|C,B|S,Bj|...|C.B|S,B] of dimension N x ¢, ¢=J(2K +1)
0= (a,ﬁl,fyl,...,ﬂK,vK)/ of dimension ¢ x 1



Estimation: B-splines

Minimizing the function of 0
Mg = ||TY — TBO||?,
where T is N x N satisfying T T = 02I',!, with

o2 =Var(X), and T, =EXX)

The least square solution is
6= (BT 'B) BT Y

and Y = HY, with H = B(B,I‘;IB)*lB'I‘;l. The 95% confidence interval,

using asymptotic normality, is ¥ =+ 1.96,/o2diag{HH'}.



Estimation: penalized B-splines

The size of the basis determines the amount of smoothing of the fitted curves.

The larger the value of J, the bumpier the fitting will be.
Eilers & Marx (1996) proposed the penalty

M} = ||TY — TB||> + \||D.0)||?

A is a positive regularization smoothing parameter
D, constructs ¢-th order differences of 6: D,0 = A8

-1 1 0 0 1 -2 1
0 -1 1 0 0 1 -2
D=0 o -1 1 orD, =10 0 1

The penalized least square solution is

0 =02 (2B T;'B+AD,D,) 'BT,'Y

and Y = HY, with H = 62B(c2B'T !B+ \D,D,) BT '



B-splines

A B-spline of degree d
e consists of d + 1 polynomial pieces, each of degree d (=3);

e is connected by equidistant knots

Domain from i, t0 Tma, divided into m equal intervals by m + 1 knots
e Each interval is covered by d + 1 B-splines of degree d

e Number of B-splines is n =m + d




Simulation: Sinusoidal time-varying amplitudes

We simulate

+Z{glk cos(w,t;) + g, (t;) sin(w,t;) } + X, 1=1,...

with:

- Sample size N = 500

- Number of replication M = 200

SK =2 J=29,d=3, \=0.008

- m(t) = sin(2xt)

- g, (t) = cos(97t), g, (t) = sin(15m7t)

- G (t) = COS(47Tt)7 oo (t) = Sin(77rt)

- w, = 407, w, = 1007

-X,i=1,...,N follows an AR(p) process, p =0,1,2

p ..
X, =30 X +2Z, {24} N(0,2)
=1



Simulation: Polynomial time-varying amplitudes

We simulate

+Z{glk cos(w,t;) + g, (t;) sin(w,t;) } + X, 1=1,...

with:

- Sample size N = 500

- Number of replication M = 200
-K=2J=29,d=3, A=0.008

-m(t) = 0.2t — 5t> + 5.5¢3

- g, (t) =4t3 =55, g, (t) = —0.5 — 0.5t + 2.5t> — 0.5¢3
- g, (1) = —t+ 12+ 1.3t3, g, (t) = 0.5+ 2t> — 33

- w, = 30w, and w, = 407.

-X,i=1,...,N follows an AR(p) process, p =0,1,2

p ..
X, =3"0X  + 2%, {2} N(0,2)
=1



Monte Carlo quantiles
confidence intervals for u(t), m(t), g, (t) or g, (t)

For t fixed, using the normal distribution, and the sample mean and variance
of m(t), g,,(t), 1 =1,2, k=1,..., K, and p(t), the confidence intervals are

m(t) £ 1.96

M
1 (i
G, (t) + 1.96\ i S@.w-aPw =12 k=1,...K

M  ~(; "
Zi:l_m(Z)(t)vgek(): MZZ 19 g():)( ),f:l,Q,k’:l,...,K,



Parametric quantiles

We know from the asymptotic properties of Least Squares that
6 ~ N(o2(c2BT;'B+AD,D,) " 'B'T;'B6,
ol (62BT ' B+ AD,D,) ‘BT (T;")B(o2B T B+ AD,Dy) ™).
Then, using the delta method, the distribution of m(t) is

(t) ~ N (02 B(1)C,, (62 B Ty B+ AD,Dy) "' B'T, 56,

o8 B()C, (62 B T B+ AD' D) 'BT T ) B(o? B T, B+ AD,D,) *(B(:)C,))
X m\Zx® Tx a X VX X" Tx et m/) )

Finally, the confidence interval for m(t) is

m ‘m m

N 5 7 —1 ’ _ ’—1,.—1 /—1 ’ _ /
B (1)C, 611,96\/0)6(%@)0 (0)2{5 Ty B+ AD,D,)~ 18 T (g )’B(U)Z’(B Ty "B+ 2D,Dy)~L(B()C,,)" .

For g,(t),1=1,2,k=1,...,K, we follow the same idea. The CI for pu(t) is

B(1)6 % 1.96,/0% B(1) (02 B'Tc ' B+ AD| D)~ BT (U5 | B(o2 B'Tc 1B + ADDy) L 5(t)’.



Simulation: Sinusoidal vs Polynomial t-v parameters

k=1 =
AR(p) m(u) = sin(2rt) g1, (u) = cos(8t) g (u) = sin(5mt) o (u) = sin(Trt)
p=0
p=1
p=2
AR(p) m(u) = u+ 0.9u3 g, (u) = —3u? gy, (u) = —u? oo (0) = —0.5u + u?
p=0
p=1




Simulation:

Sinusoidal parameters

Y. with AR(0) errors

u(t) (red), fi(t) (solid), and CI (dashed)

TR
PR L

Y, with AR(1) errors

Y. with AR(2) errors

u(t) (red), fi(t) (solid), and CI (dashed)
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Simulation: Polynomial parameters

o Y, with AR(0) errors u(t) (red), fi(t) (solid), and CI (dashed)

6 Y, with AR(1) errors

6 Y. with AR(2) errors

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0



Simulated RR Lyrae (“realistic parameters”)
Amplitude modulated RR Lyrae light curve

We simulate the data according to Benko et al. (2011) as

U"(L](t)}

c

10
a4+ a sin@rkfit+@)| +X,

vefie
k=1

where
-ce(t)=a, + 2116021 a, sin(2rkft + ¢, ) is the carrier wave with ten harmonics
-U, (t) =a,sin(2rf t+ ¢, ) is the modulation signal

- U, is the amplitude of the non-modulated light curve
- X, % N(0,0.0625), with ¢ between 0 and 10.4 days.



Simulated RR Lyrae (“realistic parameters”)

Benko et al. (2011)

Frequency day~! Amplitude mag Phase rad/2r Identification
2 0.40152 5.49 £
4 0.17093 144.04 2f
6 0.13256 285.25 31
8 0.09676 81.29 4f

10 0.07044 239.35 5
12 0.04642 37.62 6f
14 0.03049 200.01 7
16 0.01850 353.29 81
18 0.01073 151.69 9
20 0.00619 312.09 104

Table: Frequencies, amplitudes, phases parameters, a, = 0.01, f,, = 0.05 day™

©,, = 4.712388 rad/2m obtained from Benko et al. (2011).

1

, and



Simulated RR Lyrae (“realistic parameters”)
Benko et al. (2011)

We can rewrite the model as
Y; = /"(t) +&,
with

—l—Zng )sin(2rkft + ¢,),

where

m(t) =a,1+ U, (0)/0), g.()=a[l+U,O/U], k=1..

,10.



Simulated RR Lyrae (“realistic parameters”)
Benko et al. (2011)

We fit the model

= —i—ZgM sin(2rkft+ ) + X,.

where:

- m(1) ZZJ 10 B;(1)
- G (1) :ijllyijj(t)v k=1,...,10

We assume that we know the frequency f, and the phase ¢, k =1,...,10.

Parameters A\, the number of B-spline in the basis J, and the order d are 0.001,
4, and 3, respectively.



Simulated RR Lyrae (“realistic parameters”)
Benko et al. (2011)




Simulated RR Lyrae (“realistic parameters”)
Benko et al. (2011)
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Estimated RR Lyrae (“realistic parameters”)

Benko et al. (2011)

4 Fit obtained using time-varying parameters
A ?- E“‘ il I"‘ g, :\
A ‘. i E' I
o w\,ﬂ\,‘m\,\‘;\_\; \ \.\ \\411 "‘“““\ \: |
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Estimated RR Lyrae (“realistic parameters”)
Benko et al. (2011)

ime s




Outline

Periodic modulated variable stars

Estimation
An application

Non-periodic modulated variable stars



RR Lyrae CSS J234345.7+015205

e Belonging to the Pisces constellation, observed with the Kepler space
telescope over the 8.9-day long K2 Two-Wheel Concept Engineering Test.

e The data is available online from the Konkoly Observatory of the Hungarian
Academy of Sciences webpage!.

e Benkd et el. (2011) mentioned that RR Lyrae stars show change pulsation
amplitudes: this star is modulated.

Molnar et al. (2015) fitted the following model

Y =m+> A sin@rlkft+e,])+X,. (16)
k
— To estimate the main pulsation frequencies f, the harmonics kf,, the
amplitudes A and the phases ¢,, k = 1,2, ..., K, they used Period04 software.
— To fit model (16), Period04 applies the Levenberg-Marquardt non-linear

least-squares fitting procedure. With this software, they detected 10
significant harmonics which are shown in Table 2.

Thttps : //konkoly.hu/KIK/data_en.html



RR Lyrae CSS J234345.7+015205

Frequency day~! Amplitude mag Phase rad/2r Identification

1.612 0.2452 0.441 £
3.223 0.1154 0.255 2f
4.836 0.0834 0.105 3f
6.447 0.0539 0.971 4f
8.059 0.0369 0.843 5,
9.671 0.0214 0.728 6,
11.283 0.0109 0.591 7f
12.895 0.0076 0.426 81
14.507 0.0044 0.312 9f
16.119 0.0033 0.283 10£

Table: Frecuency table of RR Lyrae star in EPIC 60018778 data set: frequencies,
amplitudes, phases, and the identification of the peaks (f: main pulsation frequency)
from Molnar et al. (2015)



RR Lyrae CSS J234345.7+015205
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Fit obtained using time~invariant parameters,

Fit obtained using time-varying parameters
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Residuals obtained using time-invariant parameters
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Periodogram for unequally spaced data

Deeeming (1974) found the relation

where

( )= Z] 1 X( ) exp(idvt;), Ay = 2mv, is the discrete Fourier transform,

f_ r) exp(iA, 7)dr is the power spectrum,
'y( ) is the autocorrelatlon function of the stationary stochastic process X (t,),
Vo) = X2, exp(id(t, — 1)),
E(v) is the conjugate of F}, (v),

N
P(v) % V,, (v) is the convolution of the power spetrum P(v) with V,, (v)
o? is variance of the stationary stochastic process X (t;)

If X(t),j=1,...,N is iid N(0,07) then
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Non-stationary CARMA(5,3) model

from Kelly et al. (2014)

8 T
6 . .
4 K ol} b : J » E
Vil Al ot A
0 g l'_ | -l TPy N
Pl‘-fr' 1‘! IM.' d) | s 4
—2 “1p _U* r ! | 1 @
—45 M 1y I
. * F
_6 $ :
= °
_8 ! I !
0 500 1000 1500
Time

Non-stationarity: the parameters change from the first to the second half.



OGLE-LMC-LPV-00005

from Kelly et al. (2014)

14.25 14.20 1415 14.10

14.30

14.35

2500 3000 3500 4000 4500 5000

Data obtained from https://github.com/brandonckelly/carma_pack.


https://github.com/brandonckelly/carma_pack

OGLE-LMC-LPV-00005

from Kelly et al. (2014)

ACF of the observations computed (locally) over 8 separate time spans

ACF; (1,=14.22813) ACF, (1,=14.21934) ACF; (45=14.1771) ACF, (14,=14.20749)
g i niala s HHHH
T\13579111315 ‘13579111315 13 5 7 9 11 13 15 ‘13579111315
ACF; (1s=14.19357) ACFg (16=14.24507) ACF; (1,=14.1956) ACFg (15=14.22113)

13 5 7 9 11315 103 5 7 9 11315 13 5 7 9 113 s 13 5 7 9 111315



OGLE-LMC-LPV-00005

from Kelly et al. (2014)

PACF of the observations computed (locally) over 8 separate time spans

PACF; (0,=0.02462468)

PACF; (0,=0.04831341)

PACF; (03=0.0395832)

| — Laeye | ISR | I
rrtTLoTT SpnrT oo LTI
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PACF; (05=0.0469237)
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13 5 7 9 111315

PACF, (05=0.04578974)

PACF, (0,=0.06054136)
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PACF; (05=0.02732665)
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CARMA(p, q) process

A p, q order continuous time autoregressive moving average (CARMA (p, q))
process y(t) is defined to be the solution of

dPy(t Pyt die(t di=te(t
dtz(v) +ap_1W_§) +.Foy(t) =8 dtg) +8,_, dtq—(l) + . +e(t)

where:

g(t) continuous time white noise process with zero mean and variance o>
Time-invariant parameters o, ..., _, are the autoregressive coefficients

Time-invariant Parameters 3, ..., 3 are the moving average coefficients

Stationary condition

1) g<p
2) The roots r,,...,r, of the autoregressive polynomial A(z) = >"7_; o, 2" have
negative real parts



Non-stationarity



Non-stationarity: Astronomy

Accretion
physics

Phenomenological
model of the PSD:

a sum of

Lorenzian functions
Belloni, Psaltis, van der Klis 2002

All frequencies increase
together, and each
component is strongly
suppressed as it
approaches ~5 Hz,

1

vP,

1107°107107%0.01 0.1

vP,

107°107107%0.01 0.1

Done, Gierlinski & Kubota 2006

(after Axelsson et al. 2005; Cyg X-1)

CENTER FOR S REEL RATI4Y

HARVARD & SMITHSONIAN

m m i T T

time evolution, t0
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L
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e.g. propagation of random mass accretion rate fluctuations through the accretion disk toward its inner edge



Non-stationarity: Astronomy

CARMA. Modeling astronomical time series in the time domain

Autocovariance function at lag =

P
R(t)=0?) "

k=1

[0 Birt] [ Bi(—r)! [fexp(riT)]

»
A(z) = Zakzk
=0

—2 Re(ry) Hf:l,[;ék(rl — rk)(rl* + rk)

e weighted sum of p exponential functions

e weights are functions of MA coefficients, g

e arguments depend on the

that might be complex-valued

o exponentially damped sinusoids for complex roots,
o exponential decays for real roots.

Number of
Lorenzians?

Order p of the
AR polynomial
+

e PSD and autocovariance are a Fourier pair, so PSD of a CARMA process can be expressed as a
weighted sum of Lorentzian functions, with centroids ~ |Im(roots)| and widths ~ |Re(roots)|

see e.g. Nowak 2000, Belloni 2010, McHardy 2007
for observed X-ray PSDs of X-ray binaries and AGN

CENTER FOR SRR REII

HARVARD & SMITHSONIAN




Non-stationarity: Astronomy

Alston et al. (2018)

— The light curves exhibit significant strong non-stationarity, in addition
to that caused by the rms-flux relation, and are fractionally more
variable at lower source flux.

— The non-stationarity is manifest in the PSD with the normalisation of
the peaked components increasing with decreasing source flux, as well as
the low-frequency peak moving to higher frequencies.

— The Authors discuss the implication of these results for accretion of
matter onto black holes.
Alston (2019)

— investigates the effects of piecewise non-stationary power spectra on the
resultant flux distribution and rms-flux relation.



Non-stationarity: Statistics

Structural breaks

Csérgé and Horvath (1997)
- Hy: structural stability, H; : 3 one or multiple structural break(s).

- If Hy is rejected, the locations of the breaks need to be estimated



Non-stationarity: Statistics

Structural breaks

Csérgé and Horvath (1997)
- Hy: structural stability, H; : 3 one or multiple structural break(s).

- If Hy is rejected, the locations of the breaks need to be estimated

Horvath et al. (1999): | X () = p + (1) |

Ho == =p =p

1
HY o=y = # ey == ity
H1(42) Hl:ﬂl:ﬂ?zﬂk*#uj*+1:“':ﬂr

= Py —Hr sk *
My = My — ;*,k* t, 1<t<j"—k



Non-stationarity: Statistics

Structural breaks

Csérgé and Horvath (1997)
- Hy: structural stability, H; : 3 one or multiple structural break(s).

- If Hy is rejected, the locations of the breaks need to be estimated

Horvath et al. (1999): | X () = p + (1) |

Ho == =p =p

1
HY o=y = # ey == ity
H1(42) Hl:ﬂl:ﬂ?zﬂk*#uj*+1:“':ﬂr

= Py —Hr sk *
My = My — ;*,k* t, 1<t<j"—k

Aue and Horvath (2011): | X (¢) = o, X (t — 1) + &(¢) ‘,

H, =0 ==q, =«
Hl alz%:ak*¢ak*+1:...:%




Non-stationarity: Statistics

Structural breaks

Aue and Horvath (2011): X(¢) = o, X (t — 1) + ()

50 100 150 200 250 300 350 400 450 500



Non-stationarity: Statistics

Structural breaks

0.6X(t—1)+e(t) 1<t<250

Aue and Horvath (2011): X (t) =
—0.2X(t—1)+e(t) 250 <t <500

. 1 . . .
50 100 150 200 250 300 350 400 450 500




Non-stationarity: Statistics

Structural breaks

Var[X ()] = %2,

—a2
1ozt

W

mwwumm




Non-stationarity: Statistics
Locally stationary process: Dahlhaus (1997, 2000)

Locally stationary ARMA (LSARMA (p, ¢)) process: the solution of
z t : t
Y = Zaj (t\>yN e+ Zﬁ (ILN)EN i=1,.,N
J=1 ! J=1
where £(t) ~ WN(0,0?) and

a,(u),...,a, (u): time-varying AR coefficients

B (u)

, B,(u): time-varying MA coefficients



A simulated Locally Stationary AR(2)

Xt+1 = Oél(%)Xt -+ az(%)Xt,1 —+ o, (%)5t+1

X
j



Localized Yule-Walker: p = 2

Xs+1 = ai(F)Xs + aa(F)Xs—1 +  0e(F)estr
Xst1 = a1(3)Xs + a2(F)Xs—1 +  0c(F)es+1
Xs+1 = al(%)Xs + 02(%)){571 + Us(%)53+1



Localized Yule-Walker: p = 2

Xsi1 O 0 Xst1 = a1(#F)Xs + @(F)Xs—1 +  oe(F)est1
0 X 0 Xst1 = a1(3)Xs + a2(F)Xs—1 +  0c(F)es+1
0 0 Xs-1 Xsy1 = a1(F)Xs + a(F)Xs—1 +  0e(F)est1

X5+1 = (%)Xs-HX + az(%)Xs+1Xs—1 + Js(%)Xs+1€s+1
X Xst1 = al(%)XSQ + 052(%)XSX571 + Os(%)ngs+l
X571X5+1 = al(%)Xsles + (%)X + Ue(%)X57155+1



Localized Yule-Walker: p = 2

Use 5 observations X2, local stationarity at fixed u € [%, %[
w(E) ~as(u),  a(E)xa(u),  o2(5E) = ol(u),
and E[X,e;] = 0 whenever s < ¢
t+1 t+1 t+1

> X ~ a(w) Y XepXs 4 aw) Y XepiXsor 4+ 02(w)
s=t—1 s=t—1 s=t—1

t4+1 t+1 t+1

S XeXep1 & ar(u) » o X2 + o aa(u) Y XeXo

s=t—1 s=t—1 s=t—1

t4+1 t4+1 t+1

> Xe 1 Xep oar(u) Y Xe1Xs + as(w) Y X2,

s=t—1 s=t—1 s=t—1

Q



Localized Yule-Walker: p = 2

First smooth Giw(ul; K), then invert T./(u; h, K):



Localized Yule-Walker: p = 2

First smooth Giw(ut; K), then invert T./(u; h, K):

L*(u; h, K)

|:al(u; h):|
ay(u; h)

s2 (ut)

= Z MG

T_1 X2
= |:Z wi(u; h) (

(ut; K) =

T-1 X? Xe—1X
Z wt(u; h)
t=2 thlXt X2

t—1

Xe1Xe\] 7! 11 XXt
Z wt (us h)
X75271 t=2 Xt,1Xt+1

T—-1

t=2



Target: I (u)

Jotuh) ) &y(uh)

Satuhy By(uh)

{y(uh) &uh
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Estimation of the LSAR(p) process

Model
P t
Yw = D0 (t’)uj,zv + e (17)

Assumption

Vector of coefficient v* = (a,,, ..., &,y 50y Gy s ooy Gy 5 o0 ) is estimated by
least squares linear regression

Minimizing with respect to v*

S(y") = i {yN - (éaﬂﬁ (;)) Yoy = <§;aszl (;)) yi_p,N}Q

t=m+1+q



Estimation of the LSAR(p) process

Solution .
v =(2'2)"'Zy,,

where yy = (4., %) and Z is the (N — p) x Lp matrix

t t t
pt1 p+1,N p+1,N
B ( T )yp,N By, i Yy N By, G YN
3
B p+2)y B p+2>y B (p+2>
7 = 1( N b+1,N 'L N b+1,N L\ "ty B N
ty o\ to N ty o\
B (ﬂ)y B (A)y B (ﬂ)y
! :N N —1,N L\t ) WN-1,N L iy ) N—p.N
B (BFL),
L\ ¢ AN
N
tp+2
B, U N



Estimation of the LSAR(p) process

Number of coefficients in the model (17)
p =1= L coefficients
p =2 = 2L coefficients

p = pL coefficients
If L is large: Penalization
Minimizing
2 2
SO) = llyy = Zy7[I" + A IDey”||
\: positive regularization smoothing parameter Dyv*: Af~*

Solution -
~* = (Z'Z + \D,D,) "' Zy,,



Estimation of the LSARMA (p, q) process

Hannan-Rissanen estimation procedure with B-splines

p
yi,N:Zaj(:‘)le 1N+Z/3< >N i=1,..,N
‘N

j=1
Step 1.

A high-order LSAR(m) model (m > max(p, q)) is fitted using the
methodology mentioned before (for LSAR(p))

Then the estimated residuals are computed from the equation

~ ~ t, N t, .
En =Yn — QO <t> Yrn — - —Q (t) Yy L=m+ 1,...N
‘N ‘N

Step 2.

2 L t t L t
Assumption: o, () :Z%Bl (1>’ B () :Zb]LBL (t)
tN =1 tN tN =1 tN

Then we estimate by OLS the vector of parameters
= (a‘ll’ R a1L7021’ * 302L7 AR pl?"'?apL’bll""’ blL’b21’ AR b2L7 ot bql?""qu)/



Estimation of the LSARMA (p, q) process

Minimizing
N L ¢ L ¢
*\ (3 ()
S(vy*) = E {yn— E a, B (?) Yo1,n = T § :aszl (7) Yiep,N
t=m+1+q =1 N =1 N
L L
_ B 4 € _ b B 4 c }2
b, B, Z i—1,N a7\ 7 i—q,N
=1 N =1 N
Solution
ok / -1
¥ =(Z'Z2)" " Zy,,
_ ’ : :
where yy = (Y, 1445 Yy) and Z is the (N —m — q) X L(p + ¢g) matrix
tntltq 5 (fmtite 5 (fmtite 5 (Imtitq
By Tty Ymtq L\ ity Ymtq 1\ Ym4q+1—p L\ ty Yn4q+1-
\ - \ . .
g | A (R A (P B (R )y L, By (), Lo
N . L L
() () (s o ()
5 (mpte)e my (e, B (milte)e B, (mpite)e
v \ . . ’
By (%) Gntatl By ( MT;H ) Enbatl By mtj“ Ent2 By, mfiﬂ Gt

L . e ,
N e N )¢ N e N e
By (tw ) N-1 B, (z )‘N—l By (‘N ) N—q By, (: )(N—q y
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Simulated LSAR(p) process

p=2

V=0 () uoiw + 0 (85) haw +aws {an} ENOD)
M =200 replications
N = 100,500, 1000
B-splines of degree 3, L =17
¢+ % U1, 1000]
o, (u) = 0.78sin(27u), u € (0,1]
o, (u) = —0.4 cos(mu), u € (0,1]



Estimated parameters of the LSAR(2) process

N
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Simulated LSARMA (p,q) process

p:q:2

Y;,N:i ( )yz JNJFQNJFZIBIC(N) ) {1\7}1’1‘(/i N(0,1)

j=1
M =200 replications
N = 1000, 5000, 10000, 20000
In step 1: We fit a LSAR(6) model with B-splines of degree 1, and L = 2

In step 2: We fit a LSARMA(2) model with B-splines of degree 3, L = 6, and 5
iterations.

% U[1,1000]

al(u) = 0.3 cos(3mu), u € (0,1)
o, (u) = 0.6sin(ru), u € (0,1)
B, (u) = —0.4u 4 0.8u*, u € (0,1)
B, (u) = —0.5cos(2mu), u € (0,1)



Estimated parameters of LSARMA (2,2) process
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Data OGLE-LMC-LPV-00005

Kelly et al. (2014)

Data available at https://github.com/brandonckelly/carma_pack.

Description
435 observations
87% (380) observations in the training set
13% (55) observations in the forecasting set

Fit: CARMA (p, q) and LSAR(p) model
The (p, q) order of the CARMA model was chosen by AIC and BIC

The p order of the LSAR(p) model was chosen checking the residuals
(correlation)

To fit the LSAR(p) model we consider B-splines of degree 3, knots as a
sequence from 1 to 100 by 4 points, and A between 0.01 and 1


https://github.com/brandonckelly/carma_pack

Fit data OGLE-LMC-LPV-00005

Fit of CARMA(4,0) model

14.2
1

143
1

<
S L0000 | 1l TR TN W Ml

Fit of LSAR(5) model with A=0.09 and L=8

14.2
1

143
1

<
S L | " L UL TERC y Ml .

2500 3000 3500 4000 4500 5000

CARMA (4,0) LSAR(5)
training error 0.10534 0.15051
forecasting error 0.04548 0.03642




What do we learn?

So far
e The parameters of Modulated-Variable-Stars change over time

e Semi-parametric modeling where only part of the model depend on time
(suitable for unequally spaced sampling)

e Parametric estimation helps handling missing obervations and improving
forecasting accuracy

What’s next
e Time-varying modes of the time-varying spectra
e Comparing/combining LS-ARMA vs C-ARMA.



Estimation of the time-varying spectral densities

Fully Non-parametric

Wi~

T
B(ww) = 5 ) K () K (57) S(tw)

t,j=1

where S is the pre-periodogram (Neumann & Sachs, 1997)

Stthw)=5 Y. Y (Y (E+ )

e1<ft+ S +E)<T

Semi-parametric: TV-AR(p)




Estimation of the time-varying spectral densities

Fully Non-parametric

Wi~

T
B(ww) = 5 ) K () K (57) S(tw)

tj=1

where S is the pre-periodogram (Neumann & Sachs, 1997)

Stthw)=5 Y. Y (Y (E+ )

e1<ft+ S +E)<T

Semi-parametric: TV-AR(p)

p

Z &Z(T) eiw@‘_Q

£=0

Y(u,w) = %

two advantages:
- bandwidths to be selected only in time-domain

- forecasting becomes possible



In progress: with Malgosia Sobolewska

Time-Varying ACF of a locally stationary AR(2) Time-Varying spectrum of a locally stationary AR(2)

lags

frequency

rescaled time rescaled time



That’s it

Thanks ©
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