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Linear Regression

4

Datapoints . .
Regression

o Find the optimal y = kxz + b: Variation with respect to {k,b}.
o For given y1,y2 find the the optimal line through (z1,y1) and (z2,y2): Variation
with respect to {x1,x2}.
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Flow map and kinematic

@ Flow map (trajectory) x(X,t) : Qo —

x: = u(x(X,t),t), x(X,0)=X
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Flow map and kinematic

@ Flow map (trajectory) x(X,t) : Qo —
Xt = U(X(Xv t)7 t): X(X7 O) =X
o Deformation gradient:

F(x, 1) = 92X Xa(); D (k,

- 9X;

Deformation tensor F' carries kinematic/transport information of microstructure, patterns
and configurations in complex fluids.

@ Scalar transport:
hop+uVo=0 <= ¢(x(X,1),t)=po(X)
o Conserved quantity:
AP+ V- (pu)=0 <= ¢x(X,t),t)=¢o(X)/detF
@ Vorticity (in 3-D incompressible fluids):

wituVw—w-Vu=0 = wkx(X,t),t)=Fwi(X)
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EnVarA: Energetic Variational Approaches

Everything interacts with everything else.

First law of thermodynamics

(K+U)=Q+W

@ Second law of thermodynamics
TS =Q+TA
A>0
@ Subtracting (isothermal)
d total d T
—F =—(K4+U-TS) =W -TA.
t TR )



EnVarA: Energetic Variational Approaches !

o Energy-dissipation law (from first and second law of thermodynamics)

d
— =-2D
dt(lC +F)

@ Least Action Principle A(x) = fOT K—-Fdt

T
JA(X) = / / (forceinertial - forceconservation) -dxdxdt
0 Q

x: trajectory if applicable
@ Maximum Dissipation Principle

(SD(Xt) = / forcedissipation cxpdx
Q

o Force balance forceinertial = forceconservation + forcedissipation:
SA 6D

ix %t

1lars Onsager. Reciprocal relations in irreversible processes. i/ii, Physical review, 1931; J W Strutt (L Rayleigh). Some general theorems relating to
vibrations. Proceedings of the London Mathematical Society, 1(1):357-368, 1871.



A simple model: Hookean Spring

@ Force balance:
maxw + vy + kx = 0.



A simple model: Hookean Spring

@ Force balance:
maxw + vy + kx = 0.

o Energy law:

1
i(fmasf + Zkz?) = —yai.



A simple model: Hookean Spring

@ Force balance:
maxw + vy + kx = 0.

o Energy law:

1
i(fmasf + Zkz?) = —yai.

@ Hamiltonian part of dynamics
o Least Action Principle

1 1
6/(5mxf - 5]61‘2) dt = /(—mxtt — kx)dz dt

e Short time (near initial data) dynamics, transient dynamics.
@ Dissipation

. N - (ya?
o Maximum Dissipation Principle: g;tt)

o Long time dynamics, near equilibrium, linear response theory.

= 2vyx¢.



(Elastic) complex fluids: competitions and couplings

Competitions/couplings between different part of energies.
Macroscopic hydrodynamics v.s. Micro-structures.
Interactions vs. Constraints.

Deterministic v.s. Stochastic.

Energetics v.s. Kinematics.

Reversible v.s. Irreversible.



(Elastic) complex fluids: competitions and couplings

Competitions/couplings between different part of energies.
Macroscopic hydrodynamics v.s. Micro-structures.
Interactions vs. Constraints.

Deterministic v.s. Stochastic.

Energetics v.s. Kinematics.

Reversible v.s. Irreversible.

o Statistical physics: free energy F, non-equilibrium thermodynamics: entropy
production A.

@ Thermal effects can only be introduced through energy.



Energetic Variational Approaches in Complex Fluids

@ Liquid Crystals: orientational order and partial positional order (with Fang-Hua Lin) Nonparabolic Dissipative
Systems Modeling the Flow of Liquid Crys- tals, Communications on Pure and Applied Mathematics, Vol. 48, Issue 5, 501 — 537 (1995)..

@ Polymeric Materials and Biomaterials (gels, tissues): microscopic patterns and structures. (with Qiang Du and
Yunkyong Hyon) On some PDF based moment closure approxima- tions of micro-macro models for viscoelastic polymeric uids, Journal of
Computational and Theoretical Nanoscience (2010)..

@ Viscoelastic Materials: macroscopic continuum descriptions. (with Masakazu Endo, Yoshikazu Giga and Dario Gotz)

Stability of a two-dimensional Poiseuille-type ow for a viscoelastic uid, Journal of Mathematical Fluid Mechanics (2017)..

@ Magneto-hydrodynamics (MHD), electrolyte (EHD), EMHD (with Jinchao Xu and Maximilian Metti) Energetically stable

discretizations for charge transport and electrokinetic models, Journal of Computational Physic (2016)..

@ Mixtures: internal impurity/hetrogeneity (with Jie Shen) A Phase Field Model for the Mixture of Two Incompressible Fluids and its
Approximation by a Fourier-Spectral Method, Physica D, 179, 4, 211-228 (2003)..

@ Surface effects, interface effects (with Hao Wu) An Energetic Variational Approach for the Cahn-Hilliard Equation with Dynamic
Boundary Conditions: Derivation and Analysis, Archive of Rational Mechanics and Analysis (2018).

@ lonic fluids and ion channels (with Nir Gavish and Bob Eisenberg) Do Bi-Stable Steric Poisson-Nernst-Planck Models Describe Single

Channel Gating, Journal of Physical Chemistry B (2018)..
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f

Everything flows, nothing stays
still.

~ Heraclitus

AZ QUOTES
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ft =vAf as a gradient flow (Eulerian)

o Energy-dissipation Law (fast descent):

d 1,, 9
dx — dx.
i [avrrax=— [ dnkax

e K=0, F(f f92|Vf|2dx D(f:) = fQ|f,g|2

5D 6f0 Fdt

Tft_ T = fi =vAf

o Implicit Euler can be derived by

1|+l _ opng2 1
. /Jf ' 4 Lo an
Q

frtlgiven f7 vy 27
@ Numerical methods in Eulerian coordinate:

o Easy to deal with / can handle the large deformation
o Difficult to capture the singularity and track the free boundary
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ft = YAf as a gradient flow (Lagrangian)

@ Scalar transport: fi +u-Vf =0.
o Energy-dissipation law:

d [1._ ., 1 5
— | =|Vf dX:—/fu-Vf dx,
i | 3% [ Sl

@ In Lagrangian coordinate (search for flow map):

d 1,,0x . 2 ox _ l 2 87x
3 ), 3 (55) " Vol det 5= dX = /QU SV det g2 dX,

o LAP + MDP (with respect to the flow map z(X,t)):

luvpvi=-v. (vmwf 1|Vf|21) — AfVS
0% 2

= (V/£0) Zh=af
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pt = YAp as a diffusion

o Conserved quantity: p: + V- (pu) = 0.
o Energy-dissipation law (K =0, F = fQ w(p)dx):

d
1 w(ﬂ)dx=—/n(p)IUI2dx,
Q QH/_/
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o In Lagrangian coordinate:
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pt = YAp as a diffusion

o Conserved quantity: p: + V- (pu) = 0.
o Energy-dissipation law (K =0, F = fQ w(p)dx):

d
1 w(ﬂ)dx=—/n(p)IUI2dx,
Q QH/_/

Darcy's Law

In Lagrangian coordinate:

d po(X) 0(X) 2
— det FdX = — det FdX
dt ng<detF ¢ 9077(detF)|xt| ¢ ’

LAP + MDP (with respect to the flow map z(X,t)):

BS)

n(p)u+Vp =0, p=wpp—w

= pt=V- (%Vp)

o For ideal gas: w(p) = plnp, 7(p) = 2p = pr =7Ap



A discrete energetic variational approach

@ Discretize the energy-dissipation law by discretizing the flow map
N
xn(X,1) = > & (1)6:(X)
i=1

Let Z(t) = V@), 2 @), ..., 90, ...,P, 2, ..., eP) : R - RV*?
Discrete action function A (E(t))
Discrete dissipation: Dp,(E(t), Z'(t))
A discrete Energetic Variational Approach:
0Dy, 0AR

SE(t) — 0E(t)’

which is a nonlinear ODE system of §i(k)(t).

Introduce a proper temporal discretization = Numerical scheme



Piecewise linear approximation to flow map

o Numerical approximate the flow map x(X,t), p(x,t) is determined by the kinematic
relations (p(x,t) = po(X)/ det F).
A diffeomorphism x(X,¢) can be approximated by a piecewise linear map (ReLu).
For a given t:

the deformation matrix F is piecewise constant, so is F~! and det F

@ Finite element methods:

o triangularize the Qo € R< into some simple finite elements, denote by 7;,. which
consists of a set of simplexes {7c | e=1,... M} and a set of nodal points
Np ={X1,X2,..., XN}

Discrete flow map:

N

xn(X, 1) = &(H)6:(X)

where ¢;(X) : R — R is the hat function satisfies ¢;(X;) = d;;.



Qo is taken to be the compact support of po(X) for the PME.

X, can be viewed as “particles”.

&,(t) can be viewed as the coordinate in ;.

We fixed X; in the current approach. But X, can also be a variable.
Admissible set F",

N+1
Ffd_{xhXt Zg X) | det F. >0}

Nonnegativity of p(x,t) is naturally preserved.
n+1

@ Minimizing movement scheme: = = argmmEEFasdJ(.:.)

1 * (= =n = =n —_
J(8) = -DL(E-8") (E-&")+EE),
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A discrete Energetic Variational Approach

Discretization Discrete

I
Energy pation Law Energy-dissipation Law

An Energetic Variational
Approach
A Discrete Energetic
Variational Approach

&
<

Weak Form

Continuous PDEs ODE system
Discretization

@ The two approaches may give us different numerical schemes (non-commute).

@ The nonlinear ODE system can be realized as specific weak forms (filters).



Nonlinear Diffusion: Porous Medium f; = Af¢

@ Porous medium equation (PME) is a typical example of nonlinear diffusion

o Properties of the PME
o Finite speed of propagation
o Waiting time phenomena
o Lack of regularity near the free boundary

Barenblatt-Pattle solution (o = 4) Waiting time (o = 4)
1.2 1 T T T

1
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Energy-dissipation Law for Porous Medium Equations

Porous Medium Equations are examples of nonlinear diffusion.

Derive different numerical schemes by different energy-dissiption laws.

Energy-dissipation law 1 (commonly used):
d 1 2
< Cdx = — d
i ) a1 pdx /Qp\ ul|”dx,

Energy-dissipation law 2 (equivalent to the PME on its compact support for o > 2,
good for free boundary)

d o o—1 _ 2
dt/Q(a—l)(a—Q)p dx = /Q““ dx,




Porous Medium Equation (¢ : Complex Support
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Porous Medium Equation (o = 4): Peaks Merge

po(X,Y) = 6—20((X—0.3)2+(Y—0‘3)2) + 6—20((X+0.3)2+(Y+0.3)2) +0.001
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Phase-field Methods

o Mixture: fluid 1 + fluid 2

Label:

1 fluid 1
t) =
9(@1) { ~1 fluid 2

o Mixture energy:

Fl6. V6] = / SIV6L +Glo)de
Q

o Ginzburg-Landau:
1
G(p) = —(¢? —1)2
#) =12 -1

e philic v.s phobic by €
o ec—0: ¢ — =1



Phase-field: Allen-Cahn v.s. Cahn-Hilliard

@ Allen-Cahn equation:

¢ = —(Ad — G'(¢))

o Energy-dissipation Law:

d

= | SIV6P + Gy = - / ¢1[2da

e ¢ — 0: Motion by mean curvature

e Cahn-Hilliard equation:
¢ ==V (V(Ap—G'(9)))

o Energy-dissipation Law:

@ | 5Iver + o )dz:—/ V(A6 - G (9)de
Q



Phase-field: Flow Map Dynamics

o Kinematic: ¢+ +u-Vo =0
@ Energy-dissipation Law (Allen-Cahn):
d 1

o [ 3va +G(¢)dm:—/ﬂ|u'v¢| da

@ Governing equation:

(Voo Vo)u=—V (V60 V6 (5IVef +G))

1 08 06 04 02 0 02 04 06 08 1 1

=100 L —=1000

4e2 T 4e2 T

Initial

YED



Gradient Flow: LC confined in a square

@ Well-Order-Reconstruction Solution (WORS)
e 2D Q-tensor: Q = (dl d )

d2 —dy
o Energy-dissipation law:
d 1 1 1
— [ ZIVd]P+ =1 —-1]d]?)2%2dx =— [ —|d:|?dx
dt [, 2 4e€2 Q?

@ Hybrid with Eulerian solver to update the value of d in each node.

t=0

d

A

E
.71

- DREPTAN
. \

ava

X

X

X

L@VAVAV&;X

WD
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Particle-based Variational Inference

@ The goal: to minimize the relative entropy (Kullback-Leibler divergence KL
divergence) to a target distribution p*(x) = %efv(x)

KL(p|lp*) = / p(x) In ( P<( >))

= /p(x) In p(x) + V(x)p(x) d x +-constant.

o Continous energy-dissiption law

37 [ omp) + Vo ax = - / oluldx

@ A minimizer of K L(p||p*) can found by solving the Fokker-Planck equation:
op=V-(Vp+VVp)



Particle-based Variational Inference

@ The goal: to minimize the relative entropy (Kullback-Leibler divergence KL
divergence) to a target distribution p*(x) = %efv(x)

KL(p|lp*) = / p(x) In ( P<( >))

= /p(x) In p(x) + V(x)p(x) d x +-constant.

o Continous energy-dissiption law

37 [ omp) + Vo ax = - / oluldx

@ A minimizer of K L(p||p*) can found by solving the Fokker-Planck equation:
op=V-(Vp+VVp)

o Reényi entropy: Porous Media Euation.



Particle-based Variational Inference

Particle approximation (empirical measure): p ~ Zl L O(x = x(t)).

{x:(0)}¥, are sampled from a prior dlstr|but|on po( ).

%;i(t) can be determined by a semi-discrete energy-dissipation law:

(Bt o))

K (xz — y) is an approximation to §(z — y).

@ A discrete energetic approach:

221'\771 VK (xi —x;)
Xi(t) = — - VV(xi) | -
" ( Z]'=1 K(xi —x;) " ( )>

Solve by an implicit Euler scheme.



Particle-based Variational Inference: Toy examples

Sample from three unnormalized 2-D distributions p*(x) ox exp{—V(x)}

. Oiteration ,  2Siterations ,  Siterations ,  TSiterations
V(x) = 1 m% 2 2 2 2
200 1 : ! !
1 2 2 0 [ [ [ __,.--’-"”"“‘-'-..A'
+ ;(12 +0.03xz7 — 3) 4 Bl Bl Bl
2 2 2 2
E E E E
2 o 2 2 o 2 2 o 2 2 0 2
R ,  2Siterations ,  Siterations ,  TSiterations
2 2 2 2
1 xz—sinwgl 2 1 18 15 11
Vx)= - | ———— 0 0 o % 0
2 0.4 N . B p
2 2 2 2
3 3 E E
2 o0 2 2 o0 2
2 60 iterations 90 iterations
3 3 3 3
L f1llxll2 —2
Vi(x) = — 2 2 2 2
2 0.4 1 1 1 1
1o 5 2 0 0 0 0 i
+10g(e 217076 B 1 - %
2 2 2 2
%[16‘22]2 e o e e 0 2 e e
+e . )



o We proposed a general framework to derive an efficient structure-preserving
numerical scheme for a large class of partial differential equations by a discrete
energetic variational approach, which can be adopted to a large class of partial
differential equations with energy-dissipation law, such as nonlinear diffusion
equations, phase-field equations, and equations for liquid crystals.

@ Numerical experiments demonstrate the accuracy of our numerical method as well as
its ability in tracking the free boundary for the PME.

@ A detailed numerical analysis is needed for such type of methods.

o Limitations: Large deformation / topological change / velocity vanish (po(X) =0 in
the PME)

o Improvements: Local remeshing / reinitialisation (hybrid with Eulerian solver)



Thank you! |




