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Linear Regression

Find the optimal y = kx+ b: Variation with respect to {k, b}.
For given y1, y2 find the the optimal line through (x1, y1) and (x2, y2): Variation
with respect to {x1, x2}.

2 / 30



3 / 30



Flow map and kinematic

Flow map (trajectory) x(X, t) : Ω0 → Ω:

xt = u(x(X, t), t), x(X, 0) = X

Deformation gradient:

F (X, t) = ∂ x(X, t)
∂X (Fij = ∂xi

∂Xj
)

Deformation tensor F carries kinematic/transport information of microstructure, patterns
and configurations in complex fluids.

Scalar transport:

∂tφ+ u ·∇φ = 0 ⇐⇒ φ(x(X, t), t) = φ0(X)

Conserved quantity:

∂tφ+∇ · (φu) = 0 ⇐⇒ φ(x(X, t), t) = φ0(X)/ detF

Vorticity (in 3-D incompressible fluids):

ωt + u ·∇ω − ω · ∇u = 0 ⇐⇒ ω(x(X, t), t) = Fω0(X)
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EnVarA: Energetic Variational Approaches

Everything interacts with everything else.
First law of thermodynamics

˙(K + U) = Q̇+ Ẇ

Second law of thermodynamics

T Ṡ = Q̇+ T∆

∆ ≥ 0

Subtracting (isothermal)

d

dt
Etotal = d

dt
(K + U − TS) = Ẇ − T∆.
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Second law of thermodynamics
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EnVarA: Energetic Variational Approaches 1

Energy-dissipation law (from first and second law of thermodynamics)
d
d t (K+ F) = −2D

Least Action Principle A(x) =
∫ T

0 K −F d t:

δA(x) =
∫ T

0

∫
Ω

(forceinertial − forceconservation) · δ x d x d t

x: trajectory if applicable
Maximum Dissipation Principle

δD(xt) =
∫

Ω
forcedissipation · xt d x

Force balance forceinertial = forceconservation + forcedissipation:
δA
δ x = δD

δ xt

1Lars Onsager. Reciprocal relations in irreversible processes. i/ii, Physical review, 1931; J W Strutt (L Rayleigh). Some general theorems relating to
vibrations. Proceedings of the London Mathematical Society, 1(1):357-368, 1871.

6 / 30



A simple model: Hookean Spring

Force balance:
mxtt + γxt + kx = 0.

Energy law:
d

dt
(1
2mx

2
t + 1

2kx
2) = −γx2

t .

Hamiltonian part of dynamics
Least Action Principle

δ

∫
(
1
2
mx2

t −
1
2
kx2) dt =

∫
(−mxtt − kx)δx dt

Short time (near initial data) dynamics, transient dynamics.
Dissipation

Maximum Dissipation Principle: ∂(γx2
t )

∂xt
= 2γxt.

Long time dynamics, near equilibrium, linear response theory.
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(Elastic) complex fluids: competitions and couplings

Competitions/couplings between different part of energies.
Macroscopic hydrodynamics v.s. Micro-structures.
Interactions vs. Constraints.
Deterministic v.s. Stochastic.
Energetics v.s. Kinematics.
Reversible v.s. Irreversible.
....

Statistical physics: free energy F , non-equilibrium thermodynamics: entropy
production ∆.
Thermal effects can only be introduced through energy.
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Energetic Variational Approaches in Complex Fluids

Liquid Crystals: orientational order and partial positional order (with Fang-Hua Lin) Nonparabolic Dissipative
Systems Modeling the Flow of Liquid Crys- tals, Communications on Pure and Applied Mathematics, Vol. 48, Issue 5, 501 – 537 (1995)..
Polymeric Materials and Biomaterials (gels, tissues): microscopic patterns and structures. (with Qiang Du and
Yunkyong Hyon) On some PDF based moment closure approxima- tions of micro-macro models for viscoelastic polymeric uids, Journal of
Computational and Theoretical Nanoscience (2010)..
Viscoelastic Materials: macroscopic continuum descriptions. (with Masakazu Endo, Yoshikazu Giga and Dario Gotz)
Stability of a two-dimensional Poiseuille-type ow for a viscoelastic uid, Journal of Mathematical Fluid Mechanics (2017)..
Magneto-hydrodynamics (MHD), electrolyte (EHD), EMHD (with Jinchao Xu and Maximilian Metti) Energetically stable
discretizations for charge transport and electrokinetic models, Journal of Computational Physic (2016)..
Mixtures: internal impurity/hetrogeneity (with Jie Shen) A Phase Field Model for the Mixture of Two Incompressible Fluids and its
Approximation by a Fourier-Spectral Method, Physica D, 179, 4, 211–228 (2003)..
Surface effects, interface effects (with Hao Wu) An Energetic Variational Approach for the Cahn-Hilliard Equation with Dynamic
Boundary Conditions: Derivation and Analysis, Archive of Rational Mechanics and Analysis (2018).

Ionic fluids and ion channels (with Nir Gavish and Bob Eisenberg) Do Bi-Stable Steric Poisson-Nernst-Planck Models Describe Single

Channel Gating, Journal of Physical Chemistry B (2018)..
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ft = γ∆f as a gradient flow (Eulerian)

Energy-dissipation Law (fast descent):

d
d t

∫
Ω

1
2 |∇f |

2 d x = −
∫

Ω

1
γ
|ft|2 d x .

K = 0, F(f) =
∫

Ω
1
2 |∇f |

2 d x, D(ft) = 1
2γ

∫
Ω |ft|

2

δD
δft

= −
δ
∫ T

0 F d t
δf

⇒ ft = γ∆f

Implicit Euler can be derived by

min
fn+1given fn

∫
Ω

1
γ

|fn+1 − fn|2

2τ
+

1
2
|∇fn+1|2 d x .

Numerical methods in Eulerian coordinate:
Easy to deal with / can handle the large deformation
Difficult to capture the singularity and track the free boundary
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ft = γ∆f as a gradient flow (Lagrangian)

Scalar transport: ft + u ·∇f = 0.
Energy-dissipation law:

d
d t

∫
Ω

1
2 |∇f |

2 d x = −
∫

Ω

1
γ
|u ·∇f |2 d x,

In Lagrangian coordinate (search for flow map):

d
d t

∫
Ω0

1
2 |(

∂ x
∂X )−T∇Xf0|2 det ∂ x

∂X d X = −
∫

Ω0

1
γ
|xt ·∇f |2 det ∂ x

∂X d X,

LAP + MDP (with respect to the flow map x(X, t)):
1
γ

(u ·∇f) ∇f = −∇ ·
(
∇f ⊗∇f −

1
2
|∇f |2I

)
= ∆f∇f

⇒ (∇f 6= 0)
1
γ
ft = ∆f
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ρt = γ∆ρ as a diffusion

Conserved quantity: ρt +∇ · (ρu) = 0.
Energy-dissipation law (K = 0,F =

∫
Ω ω(ρ) d x):

d
d t

∫
Ω
ω(ρ) d x = −

∫
Ω
η(ρ)|u |2︸ ︷︷ ︸
Darcy’s Law

d x,

In Lagrangian coordinate:

d
d t

∫
Ω0

ω

(
ρ0(X)
detF

)
detF d X = −

∫
Ω0

η(ρ0(X)
detF )|xt |2 detF d X,

LAP + MDP (with respect to the flow map x(X, t)):

η(ρ) u +∇p = 0, p = ωρρ− ω

⇒ ρt = ∇ ·
(

ρ

η(ρ)
∇p
)

For ideal gas: ω(ρ) = ρ ln ρ, η(ρ) = 1
γ
ρ ⇒ ρt = γ∆ρ
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A discrete energetic variational approach

Discretize the energy-dissipation law by discretizing the flow map

xh(X, t) =
N∑
i=1

ξi(t)φi(X)

Let Ξ(t) = (ξ(1)
1 (t), ξ(2)

1 (t), . . . , ξ(d)
1 (t), . . . , ξ(1)

N , ξ
(2)
N , . . . , ξ

(d)
N ) : R→ RN×d:

Discrete action function Ah(Ξ(t))
Discrete dissipation: Dh(Ξ(t),Ξ′(t))
A discrete Energetic Variational Approach:

δDh
δΞ′(t) = δAh

δΞ(t) ,

which is a nonlinear ODE system of ξ(k)
i (t).

Introduce a proper temporal discretization ⇒ Numerical scheme
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Piecewise linear approximation to flow map

Numerical approximate the flow map x(X, t), ρ(x, t) is determined by the kinematic
relations (ρ(x, t) = ρ0(X)/ detF ).
A diffeomorphism x(X, t) can be approximated by a piecewise linear map (ReLu).
For a given t:

the deformation matrix F is piecewise constant, so is F−1 and detF
Finite element methods:

triangularize the Ω0 ∈ Rd into some simple finite elements, denote by Th. which
consists of a set of simplexes {τe | e = 1, . . .M} and a set of nodal points
Nh = {X1,X2, . . . ,XN}.

Discrete flow map:

xh(X, t) =
N∑
i=1

ξi(t)φi(X)

where φi(X) : Rd → R is the hat function satisfies φi(Xj) = δij .
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Ω0 is taken to be the compact support of ρ0(X) for the PME.
Xi can be viewed as “particles”.
ξi(t) can be viewed as the coordinate in Ωt.
We fixed Xi in the current approach. But Xi can also be a variable.
Admissible set Fhad:

Fhad =

{
xh(X, t) =

N+1∑
i=0

ξi(t)φi(X) | detFe > 0

}
.

Nonnegativity of ρ(x, t) is naturally preserved.
Minimizing movement scheme: Ξn+1 := argminΞ∈FΞ

ad
J(Ξ)

J(Ξ) =
1
2τ

D∗n(Ξ−Ξn) · (Ξ−Ξn) + E(Ξ),
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A discrete Energetic Variational Approach

Energy-dissipation Law Discrete
Energy-dissipation Law

An
 E

ne
rg
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ic
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tio
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ch

 

Continuous PDEs

A 
Di

sc
re

te
 E

ne
rg

et
ic 

Va
ria

tio
na

l A
pp

ro
ac

h

ODE system
Discretization

Discretization

Weak Form

The two approaches may give us different numerical schemes (non-commute).
The nonlinear ODE system can be realized as specific weak forms (filters).
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Nonlinear Diffusion: Porous Medium ft = ∆fα

Porous medium equation (PME) is a typical example of nonlinear diffusion
Properties of the PME

Finite speed of propagation
Waiting time phenomena
Lack of regularity near the free boundary

Barenblatt-Pattle solution (α = 4)

-5 0 5
0

0.2

0.4

0.6

0.8

1

1.2

Waiting time (α = 4)

-4 -3 -2 -1 0 1
0

0.2

0.4

0.6

0.8

1
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Energy-dissipation Law for Porous Medium Equations

Porous Medium Equations are examples of nonlinear diffusion.
Derive different numerical schemes by different energy-dissiption laws.

Energy-dissipation law 1 (commonly used):

d
d t

∫
Ω

1
α− 1ρ

α d x = −
∫

Ω
ρ|u |2 d x,

Energy-dissipation law 2 (equivalent to the PME on its compact support for α > 2,
good for free boundary)

d
d t

∫
Ω

α

(α− 1)(α− 2)ρ
α−1 d x = −

∫
Ω
|u |2 d x,
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Porous Medium Equation (α = 3): Complex Support

t = 0.0 t = 0.05

t = 0.1 t = 0.2
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Porous Medium Equation (α = 4): Peaks Merge

ρ0(X,Y ) = e−20((X−0.3)2+(Y−0.3)2) + e−20((X+0.3)2+(Y+0.3)2) + 0.001

t = 0.01 t = 0.1

t = 1 t = 5
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Phase-field Methods

Mixture: fluid 1 + fluid 2

Label:

φ(x, t) =
{

1 fluid 1
−1 fluid 2

Mixture energy:

F [φ,∇φ] =
∫

Ω

1
2 |∇φ|

2 +G(φ) dx

Ginzburg-Landau:
G(φ) =

1
4ε2

(φ2 − 1)2

philic v.s phobic by ε
ε→ 0: φ→ ±1
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Phase-field: Allen-Cahn v.s. Cahn-Hilliard

Allen-Cahn equation:
φt = −(∆φ−G′(φ))

Energy-dissipation Law:

d

dt

∫
Ω

1
2
|∇φ|2 +G(φ)dx = −

∫
Ω
|φt|2dx

ε→ 0: Motion by mean curvature

Cahn-Hilliard equation:

φt = −∇ · (∇(∆φ−G′(φ)))

Energy-dissipation Law:

d

dt

∫
Ω

1
2
|∇φ|2 +G(φ)dx = −

∫
Ω
|∇(∆φ−G′(φ))|2dx
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Phase-field: Flow Map Dynamics

Kinematic: φt + u ·∇φ = 0
Energy-dissipation Law (Allen-Cahn):

d

dt

∫
Ω

1
2 |∇φ|

2 +G(φ)dx = −
∫

Ω
|u ·∇φ|2dx

Governing equation:

(∇φ⊗∇φ) u = −∇ ·
(
∇φ⊗∇φ− (1

2 |∇φ|
2 +G(φ))I

)

Initial

1
4ε2 = 100 1

4ε2 = 1000

24 / 30



Gradient Flow: LC confined in a square

Well-Order-Reconstruction Solution (WORS)

2D Q-tensor: Q =
(
d1 d2
d2 −d1

)
Energy-dissipation law:

d
d t

∫
Ω

1
2
|∇d |2 +

1
4ε2

(1− | d |2)2 d x = −
∫

Ω

1
γ
| dt |2 d x

Hybrid with Eulerian solver to update the value of d in each node.

Initial WORS
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Particle-based Variational Inference

The goal: to minimize the relative entropy (Kullback–Leibler divergence KL
divergence) to a target distribution ρ∗(x) = 1

Z
e−V (x)

KL(ρ||ρ∗) =
∫

ρ(x) ln
(
ρ(x)
ρ∗(x)

)
d x

=
∫

ρ(x) ln ρ(x) + V (x)ρ(x) d x +constant.

Continous energy-dissiption law
d
d t

∫
Ω
ρ(x) ln ρ(x) + V (x)ρ(x) d x = −

∫
Ω
ρ|u |2 d x

A minimizer of KL(ρ||ρ∗) can found by solving the Fokker-Planck equation:
∂tρ = ∇ · (∇ρ+∇V ρ)

Rènyi entropy: Porous Media Euation.
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divergence) to a target distribution ρ∗(x) = 1

Z
e−V (x)

KL(ρ||ρ∗) =
∫

ρ(x) ln
(
ρ(x)
ρ∗(x)

)
d x

=
∫

ρ(x) ln ρ(x) + V (x)ρ(x) d x +constant.

Continous energy-dissiption law
d
d t

∫
Ω
ρ(x) ln ρ(x) + V (x)ρ(x) d x = −

∫
Ω
ρ|u |2 d x

A minimizer of KL(ρ||ρ∗) can found by solving the Fokker-Planck equation:
∂tρ = ∇ · (∇ρ+∇V ρ)
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Particle-based Variational Inference

Particle approximation (empirical measure): ρ(x, t) ≈ 1
N

∑N

i=1 δ(x−xi(t)).
{xi(0)}Ni=1 are sampled from a prior distribution ρ0(x).
ẋi(t) can be determined by a semi-discrete energy-dissipation law:

d
d t

(
1
N

(
N∑
i=1

(ln

(
1
N

N∑
j=1

K(xi − xj)

)
+ V (xi)

))
= − 1

N

N∑
i=1

|ẋi|2

K(x− y) is an approximation to δ(x− y).
A discrete energetic approach:

ẋi(t) = −

(
2
∑N

j=1∇K(xi−xj)∑N

j=1 K(xi−xj)
+∇V (xi)

)
.

Solve by an implicit Euler scheme.
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Particle-based Variational Inference: Toy examples

Sample from three unnormalized 2-D distributions ρ∗(x) ∝ exp{−V (x)}

V (x) =
1

200
x
2
1

+
1

2
(x2 + 0.03x2

1 − 3)2

V (x) =
1

2

[
x2 − sin πx1

2
0.4

]2

V (x) =
1

2

(
|| x ||2 − 2

0.4

)2

+ log
(
e
− 1

2 [ x1−2
0.6 ]2

+ e
− 1

2 [ x1+2
0.6 ]2

)
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Summary

We proposed a general framework to derive an efficient structure-preserving
numerical scheme for a large class of partial differential equations by a discrete
energetic variational approach, which can be adopted to a large class of partial
differential equations with energy-dissipation law, such as nonlinear diffusion
equations, phase-field equations, and equations for liquid crystals.
Numerical experiments demonstrate the accuracy of our numerical method as well as
its ability in tracking the free boundary for the PME.
A detailed numerical analysis is needed for such type of methods.
Limitations: Large deformation / topological change / velocity vanish (ρ0(X) = 0 in
the PME)
Improvements: Local remeshing / reinitialisation (hybrid with Eulerian solver)
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Thank you!
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