Development of Novel Statistical Tools for the Analysis of Astronomical Data

Andreas Zezas CfA / Univ. of Crete

What is ASTROSTAT-II ?

What is ASTROSTAT-II ?

The follow-up of ASTROSTAT-I!

ASTROSTAT-I Network

- Image Analysis
- Classification
- Fitting complex data

- Source classification
 - Classification of galaxies (Stampoulis)
 - Classification of X-ray binaries (Maragkakis)
 - Supernova remnant classification (Kopsacheili)
 - Stellar spectral type classification

- Source classification
 - Classification of galaxies (Stampoulis)
 - Classification of X-ray binaries (Maragkakis)
 - Supernova remnant classification (Kopsacheili)
 - Stellar spectral type classification

- Imaging analysis
 - LIRA (McKeough / Stein)
 - Seeded Region Growing in Poisson regime (Fan / Lee)

Fan et al. In prep

- Source classification
 - Classification of galaxies (Stampoulis)
 - Classification of X-ray binaries (Maragkakis)
 - Stellar spectral type classification
- Imaging analysis
 - LIRA (McKeough / Stein)
 - Seeded Region Growing in Poisson regime (Fan / Lee)
- Fitting / inference
 - Interpolation of sparse multi-dimensional data (Fragos / Zevin)
 - SN cosmology (van Dyk / Mandel)

What is ASTROSTAT-II ?

Continuation and extension of ASTROSTAT-I

ASTROSTAT-II Network

- Source classification
- Imaging analysis
- Fitting / inference
- Timing

- Source classification
 - Classification of X-ray binaries
 - Solar Region Classification
- Imaging analysis
 - Fine structure in galaxies
 - LIRA
 - Confused sources
- Fitting / inference
 - X-ray binary popualtion synthesis
 - Model uncertainties (DEM / CMD)
 - SN cosmology
- Timing
 - Variability in n-D
 - Detection + characterization of transients

- Source classification
 - Classification of X-ray binaries
 - Solar Region Classification
 - Imaging analysis
 - Fine structure in galaxies
 - LIRA
 - Confused sources
- Fitting / inference
 - X-ray binary popualtion synthesis
 - Model uncertainties (DEM / CMD)
 - SN cosmology
- Timing
 - Variability in n-D
 - Detection + characterization of transients

Wide range of quality (resolution, depth)

Observations = Real image * instrument response (Point Spread Function)

Wide range of quality (resolution, depth)

Observations = Real image * instrument response (Point Spread Function)

Multi-wavelength data

Multi-SCale data

But we always want to squeeze out the most

• Detect structures

But we always want to squeeze out the most

• Bring out structures

But we always want to squeeze out the most

- Detect structures
- Bring out structures
- Find the faintest sources
- Resolve sources

Project I Next generation of source detection

Celldetect (+Max. likelihood)

Calderwood et al. 2001

Project I Next generation of source detection

Celldetect (+Max. likelihood)

Wavelets

Convolve image with wavelet Identify maxima \rightarrow create source list

Project I Next generation of source detection

Celldetect (+Max. likelihood)

Wavelets

Freeman et al. 2001

Next generation of source detection

Limitations of wavdetect

detection significance

detection efficiency

application on multiple datasets

Next generation of source detection

Multi-dimensional – multi-scale detection

https://www.atnf.csiro.au/research/WALLABY/3Dvis.html

Project II Source confusion

Brightman et al. 2016

2D joint fit of two sources

Primini & Kashyap 2014

2D joint fit of two sources

3D spectro-spatial (David Jones) tempo-spatial (Luis Campos)

Bachetti et a.l 2014

2D joint fit of two sources

3D spectro-spatial (David Jones) tempo-spatial (Luis Campos)

Next step: 4D spectro-tempo-spatial (???)

Looking ahead

X-ray telescopes eROSITA, XRISM, ATHENA, Lynx, FORCE/HEXP

Optical surveys: LSST

Will require advanced source detection and source characterization methods