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Controlled Variable Selection

Given:

Y an outcome of interest (AKA response or dependent variable),

X1, . . . , Xp a set of p potential explanatory variables (AKA covariates,
features, or independent variables),

How can we select important explanatory variables with few mistakes?

Applications to:

Biology/genomics/health care

Economics/political science

Industry/technology

Astronomy?
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Controlled Variable Selection (cont’d)

What is an important variable?

We consider Xj to be unimportant if the conditional distribution of Y given
X1, . . . , Xp does not depend on Xj . Formally, Xj is unimportant if it is
conditionally independent of Y given X-j :

Y ⊥⊥ Xj | X-j

Markov Blanket of Y : smallest set S such that Y ⊥⊥ X-S |XS

For GLMs with no stochastically redundant covariates, equivalent to {j : βj = 0}

To make sure we do not make too many mistakes, we seek to select a set Ŝ to
control the false discovery rate (FDR):

FDR = E
[

#{j in Ŝ : Xj unimportant}
#{j in Ŝ}

]
≤ q (e.g., 10%)

“Here is a set of variables Ŝ, 90% of which I expect to be important”
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Group Knockoffs

“What if two variables are so correlated as to be indistinguishable?”

Insufficient info to select either variable confidently (needed for FDR control)

Single-variable resolution impossible: wrong question

Group variables with their highly-correlated neighbors:
⊎m

k=1Gk = {1, . . . , p}
Redefine null hypothesis on per-group basis: group Gk is unimportant if

Y ⊥⊥ XGk
| X-Gk

Redefine FDR: for selected set of groups ŜG,

FDRG = E
[

#{k in ŜG : Gk contains no important variables}
#{j in ŜG}

]
≤ q (e.g., 10%)

Straightforward extension to group knockoffs (Dai and Barber, 2016)
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]
≤ q (e.g., 10%)

Straightforward extension to group knockoffs (Dai and Barber, 2016)

Lucas Janson (Harvard Statistics) Model-X Knockoffs 3 / 25



Group Knockoffs

“What if two variables are so correlated as to be indistinguishable?”

Insufficient info to select either variable confidently (needed for FDR control)

Single-variable resolution impossible: wrong question

Group variables with their highly-correlated neighbors:
⊎m

k=1Gk = {1, . . . , p}
Redefine null hypothesis on per-group basis: group Gk is unimportant if

Y ⊥⊥ XGk
| X-Gk

Redefine FDR: for selected set of groups ŜG,
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Outline

Review of (model-X) knockoffs, which uses knowledge of X’s distribution to
solve the controlled variable selection problem with

Any model for Y and X1, . . . , Xp

Any dimension (including p > n)
Finite-sample control (non-asymptotic) of FDR
Practical performance on real problems (≈ 2× power in real GWAS)

Metropolized Knockoff Sampling

New extremely general way to generate knockoffs
Needs only an unnormalized density function

Conditional Knockoffs

Relaxes requirement on the knowledge of X’s distribution
Same exact guarantees, and almost identical power
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Existing Methods for Controlled Variable Selection

Marginal p-values

Excellent exploratory tool
Answer low-dimensional question Y ⊥⊥ Xj instead of Y ⊥⊥ Xj | X-j

Can lose power, interpretation, and FDR control when Xj are correlated

Bayesian inference

Great way of incorporating prior information
Computation constrains to simple priors which may not match actual prior
knowledge
Inference (esp. in high dimensions) is sensitive to choice of prior

Machine learning

Excellent for prediction
Cross-validation comes with no statistical guarantees
Statistical analysis exists only for simplest methods (lasso) and makes
unrealistic assumptions
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Model-X Knockoffs
(Candès, Fan, J., Lv, JRSSB, 2018)
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View from 10,000 feet

You have:

n data samples of Y and X stacked into y ∈ Rn and X ∈ Rn×p

Algorithm to compute variable importance measure Zj of each Xj for Y
This need not be based on any statistical model, or have any statistical
properties at all
For instance, you could fit any machine learning method and use the drop in
prediction accuracy when Xj is removed from the data

Desired FDR level q but no way to use Zj to control it

If you can model X’s distribution, knockoffs allows you to:

Select a subset of the variables based on your variable importance measure
and nothing else, while controlling the FDR exactly (no asymptotics)

y, X1, . . . ,Xp

↓
Variable importances Z1, . . . , Zp
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Overview of the Knockoffs Procedure

(1) Construct knockoffs:

Artificial versions (“knockoffs”) of each variable
Act as controls for assessing importance of original variables

(2) Compute variable importance statistics:

Compute statistics measuring variable importance for all variables and
knockoffs

(3) Select variables:

Select variables whose importance statistic sufficiently larger than its knockoff
“Sufficiently larger” is well-defined through a concrete step-up procedure

Symmetry of null variables and their knockoffs guarantees exchangeability of
their corresponding importance statistics

That symmetry leads to selection in step (3) controlling the FDR exactly
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A Picture for Intuition

Null distribution of variable importance measures
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Figure: Variable importance measures for 500 variables and their knockoffs. Colored
points are nulls, grey are non-nulls.
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Knockoff Construction

Valid knockoffs are defined by

(1) Swap exchangeability:

[X1, ···,Xj , ···,Xp, X̃ 1, ···,X̃ j , ···,X̃ p]

D
= [X1, ···,X̃ j , ···,Xp, X̃ 1, ···,Xj , ···,X̃ p]

(2) Nullity: X̃ ⊥⊥ y |X (don’t look at y when constructing X̃ )

Example: (X1, . . . , Xp) ∼ N (0,Σ), need

Cov(X1, . . . , Xp, X̃1, . . . , X̃p) =

[
Σ Σ− diag{s}

Σ− diag{s} Σ

]

Efficient knockoff constructions for the following X distributions:

Multivariate Gaussian (Candès et al., 2018)

Discrete Markov chains (Sesia et al., 2019)

Hidden Markov models (Sesia et al., 2019)

Gaussian mixture models (Gimenez et al., 2018)
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Robustness

●

Exact Cov

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
Relative Frobenius Norm Error

P
ow

er

●

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
Relative Frobenius Norm Error

F
D

R

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n = 800, p = 1500,
and target FDR is 10%. Y comes from a binomial linear model with logit link function
with 50 nonzero entries.
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Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n = 800, p = 1500,
and target FDR is 10%. Y comes from a binomial linear model with logit link function
with 50 nonzero entries.
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Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n = 800, p = 1500,
and target FDR is 10%. Y comes from a binomial linear model with logit link function
with 50 nonzero entries.
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Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n = 800, p = 1500,
and target FDR is 10%. Y comes from a binomial linear model with logit link function
with 50 nonzero entries.

Lucas Janson (Harvard Statistics) Model-X Knockoffs 10 / 25



Robustness

● ●
●

●

●

Exact Cov

Graph. Lasso
50% Emp. Cov

62.5% Emp. Cov

75% Emp. Cov

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
Relative Frobenius Norm Error

P
ow

er

● ● ●
●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0
Relative Frobenius Norm Error

F
D

R

Figure: Covariates are AR(1) with autocorrelation coefficient 0.3. n = 800, p = 1500,
and target FDR is 10%. Y comes from a binomial linear model with logit link function
with 50 nonzero entries.
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Variable Importance Statistics

Variable importance measures for all original and knockoff variables

Z1, . . . , Zp, Z̃1, . . . , Z̃p

Examples:

Magnitude of fitted coefficient β from a lasso regression of y on [XX̃ ]

CV error increase when variable dropped, using any machine learning method

Adaptivity

Higher-level adaptivity: CV to choose best-fitting model for inference

− E.g., fit random forest and `1-penalized regression; derive feature importance
from whichever has lower CV error—still strict FDR control

Can even let analyst look at (masked version of) data to choose Z function

Prior information

Bayesian approach: choose prior and model, and Zj could be the posterior
probability that Xj contributes to the model

Still strict FDR control, even if wrong prior or MCMC has not converged
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Tracking the FDR

Compute W1, . . . ,Wp, where

Wj = Zj − Z̃j

and select variables with Wj above a positive threshold τ̂

FDR = E
[

#{null Xj selected}
#{total Xj selected}

]

= E
[

#{null positive |Wj | > τ̂}
#{positive |Wj | > τ̂}

]
≈ E

[
#{null negative |Wj | > τ̂}

#{positive |Wj | > τ̂}

]
≤ E

[
#{negative |Wj | > τ̂}
#{positive |Wj | > τ̂}

]
= E

[
F̂DR

]
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Selecting Variables

Example with p = 10 and q = 20% = 1/5:

0
W1

W2

W3 W4 W5

W6W7

W8

W9W10

|W1|

|W2|

|W3| |W4| |W5|

|W6||W7|

|W8|

|W9| |W10|

0
1

0
2

0
3

1
3

1
4

1
5

2
5

3
5

3
6

3
7

|W1| |W4| |W5|

|W6||W7|

q = 20%

F̂DR =
#{negative Wj}
#{positive Wj}

τ̂

S = {1, 4, 5, 6, 7}
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Simulations in Low-Dimensional Linear Model
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Figure: Power and FDR (target is 10%) for knockoffs and alternative procedures. The
design matrix is i.i.d. N (0, 1/n), n = 3000, p = 1000, and y comes from a Gaussian
linear model with 60 nonzero regression coefficients having equal magnitudes and
random signs. The noise variance is 1.

Lucas Janson (Harvard Statistics) Model-X Knockoffs 14 / 25



Computation and Software

R, Python, and Matlab packages available depending on knockoff
construction; link on my website

Knockoff construction algorithms generally scale linearly in p and n

Given variable importances Z1, . . . , Zp, Z̃1, . . . , Z̃p, computation trivial

Need to compute Z1, . . . , Zp, Z̃1, . . . , Z̃p

Just compute variable importances for twice as many variables
Generally only constant times slower than computing variable importances
without knockoffs
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Metropolized Knockoff Sampling
(Bates, Candès, J., Wang, arXiv, 2019)
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Metropolized Knockoff Sampling

S. Bates, E. Candès, L. Janson, and W. Wang. Metropolized Knockoff
Sampling. 2019. [https://arxiv.org/abs/1903.00434](Bates et al., 2019)

Solves computational problem of sampling knockoffs for any X distribution

Reframes knockoff sampling problem in terms of reversible Markov chains

Enables huge body of tools from MCMC to be used for the problem

Yet, unlike MCMC, Metropolized knockoff sampling is exact!
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Sequential Knockoff Sampling

We introduce a flexible way to generate knockoffs called Sequential Conditional
Exchangeable Pairs (SCEP):

For j = 1, . . . , p

Condition on everything except Xj so far: X1:(j−1), X(j+1):p, X̃1:(j−1)

Generate X̃j conditionally-exchangeably with Xj

Make sure that (X̃j , Xj)’s distribution is invariant to swapping
previously-sampled knockoff pairs

This is completely general: all knockoff distributions are a special case

Can think of X̃j being one step from Xj in a reversible Markov chain with
stationary distribution given by Xj ’s (conditional) distribution
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Using Tools from Markov Chain Monte Carlo

The reversible Markov chain formulation of knockoff sampling allows us to draw
from MCMC literature, e.g., Metropolis–Hastings

Metropolized knockoff sampling (Metro):
For j = 1, . . . , p

Sample X∗j = x∗j from a faithful, symmetric proposal distribution qj

Accept the proposal with probability

min

1,
P
(
Xj = x∗j , X-j = x-j , X̃1:(j−1) = x̃1:(j−1), X

∗
1:(j−1) = x∗1:(j−1)

)
P
(
Xj = xj , X-j = x-j , X̃1:(j−1) = x̃1:(j−1), X

∗
1:(j−1) = x∗1:(j−1)

)


Upon acceptance, set X̃j = X∗j ; otherwise, set X̃j = Xj
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Computational Complexity

Any completely general knockoff sampler has time complexity at least 2p

Indeed the ratio

P
(
Xj = x∗j , X-j = x-j , X̃1:(j−1) = x̃1:(j−1), X

∗
1:(j−1) = x∗1:(j−1)

)
P
(
Xj = xj , X-j = x-j , X̃1:(j−1) = x̃1:(j−1), X

∗
1:(j−1) = x∗1:(j−1)

)
in Metro will in general be hard to compute

X’s distribution often has conditional independence / graphical model structure

Metro’s complexity only exponential in the width of a junction tree for the
graph; we show this is optimal in some cases

Enables sampling in, e.g.,

Continuous graphical models (e.g., Markov chains) that can have skewness or
heavy tails

Discrete graphical models with any number of states, e.g., Ising models or,
more generally, Gibbs measures
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Conditional Knockoffs
(Huang and J., arXiv, 2019)
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Relaxing the Assumptions of Knockoffs by Conditioning

D. Huang and L. Janson. Relaxing the Assumptions of Knockoffs by
Conditioning. 2019. [https://arxiv.org/abs/1903.02806](Huang and
Janson, 2019)

Removes assumption that X’s distribution known

Allows X’s distribution to be known only up to a model

Model can have O(n∗p) free parameters, where n∗ is the total number of
covariate samples, labeled and unlabeled

Retains exact same error control guarantees as model-X knockoffs, and barely
any power loss in simulations

Note O(n∗p) parameters is far more than allowed in fixed-X inference, which
is typically o(n)
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Conditional Knockoffs

Recall definition of valid knockoffs: for any j,

[X,X̃ ]swap(j)
D
= [X,X̃ ]

Note by law of total probability, a sufficient condition is that for any j,

[X,X̃ ]swap(j)
D
= [X,X̃ ]

∣∣∣ T (X)

for some statistic T (X)

Now suppose X’s rows are i.i.d. from a model with sufficient statistic T (X)

E.g., if X ∼ N (µ,Σ), then (µ̂, Σ̂) are sufficient

Then by sufficiency, the distribution X | T (X) is model-parameter-free

Sample knockoffs as when X’s distribution known, but valid for any distribution
in a model
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Example Models

Low-dimensional arbitrary Gaussian model:{
N (µ,Σ) : µ ∈ Rp, Σ ∈ Rp×p, Σ � 0

}
,

when n > 2p

[can have p = Ω(n), number of parameters is Ω(np)]

Gaussian graphical model:{
N (µ,Σ) : µ ∈ Rp, Σ ∈ Rp×p, Σ � 0,

(
Σ−1

)
j,k

= 0 for all (j, k) /∈ E
}

for some known sparsity pattern E [Σ−1 can be banded with bandwidth
Ω(n), number of parameters is Ω(np)]

Discrete graphical model:distribution on

p∏
j=1

[Kj ] : Xj ⊥⊥ Xk | X[p]\{j,k} for all (j, k) /∈ E


for some known positive integers Kj and known sparsity pattern E [X can
be Ω(

√
n)-state Markov chain, number of parameters is Ω(np)]
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for some known positive integers Kj and known sparsity pattern E

[X can
be Ω(

√
n)-state Markov chain, number of parameters is Ω(np)]
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Example Models
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Simulations in Low-Dimensional Linear Model

In Figure 2b, the xi 2 R2000 are time-varying AR(10); specifically, xi
i.i.d.⇠ N (0,⌃) where ⌃ is

the renormalization of ⌃0 to have 1’s on the diagonal, and (⌃0)
�1
j,k = 1{j=k} � 0.05 · 1{1|j�k|10}.

We chose n0 = 50, resulting in 1, 660 variables that are each blocked in half the samples. The

number of unknown parameters is 2p + 10p� 10⇥ 11/2 = 23, 945 while the sample sizes are again

much smaller, n  500, and the power di↵erence between conditional and unconditional knocko↵s

remains very slight.
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Figure 2: Power curves of conditional and unconditional knocko↵s for p = 2000 and a range of n

for (a) an AR(1) model and (b) an AR(10) model. Standard errors are all below 0.008.

Note that the simulation in Figure 2a blocked on just roughly 10% of its variables (i.e., |B1 [
B2|/p ⇡ 10%), and since the signals are uniformly distributed, one might worry that in specific

applications where the blocked variables and signals happened to align, the power loss might be

much worse. But Figure 2b’s simulation blocked on over 80% of its variables and still su↵ered very

little power loss compared to unconditional knocko↵s, suggesting that even the blocking of signal

variables has only a small e↵ect on power thanks to the data splitting in Algorithm 4.

Finally, we examine the sensitivity of the power of conditional knocko↵s to the choice of n0 in

Algorithm 3 for choosing the Bi. In the case of AR(1) with n = 300 and p = 2000, Figure 3a

shows the averaged density1 of original-knocko↵ correlations ⇢̃j = X>
j X̃j/(kXjkkX̃jk) for three

di↵erent choices of n0, and Figure 3b shows the corresponding power curves. Recall that smaller n0

means blocking on more variables but generating better knocko↵s for the non-blocked variables in

each step i of Algorithm 4. Figure 3a shows quite di↵erent correlation profiles for di↵erent n0, with

n0 = 40 seeming to provide the density with mass most concentrated to the left. Indeed Figure 3b

shows n0 = 40 is most powerful, but only by a small margin—the power is quite insensitive to the

choice of n0. In applications, the choice of n0 may rely on an approximate version of Figure 3a

obtained by simulating X from an estimated model.

13200 independent simulations were averaged and the kernel density estimate used a Gaussian kernel with a

bandwidth of 0.01.

16

Figure: (a) is time-varying AR(1) with p = 2000 totaling 5,999 parameters in model, (b)
is time-varying AR(10) with p = 2000 totaling 23,945 parameters in model
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Takeaways

Can run knockoffs when Y | X is completely unknown and X’s distribution is only
known up to a model with Ω(np) parameters

Compare to results for asymptotic p-values with penalized GLMs: X’s
distribution unknown and Y | X known up to model with o(n) parameters

Can actually replace n with n∗, which includes unlabeled samples of X

By conditioning on T (X), sampling and exchangeability hold on measure-zero
manifold of R2p

We use topological measure theory to prove our results
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Summary

Model-X knockoffs is a powerful and flexible tool for high-dimensional controlled
variable selection

Beyond knockoffs, I am interested in all types of high-dimensional
inference—please reach out if you think this work or something like it could help
with work you’re doing!

http://lucasjanson.fas.harvard.edu

ljanson@fas.harvard.edu

Thank you!
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Existing Methods: Low-Dimensional Linear Model

Suppose we assume that our data:

follows a linear model:

Y = X1β1 + · · ·+Xpβp + ε, ε ∼ N (0, σ2),

has more observations that variables: n ≥ p (low-dimensional).

Classical problem:

Ordinary least squares (OLS) theory gives exact p-values for testing whether
each βj = 0 or not (under very mild assumptions, βj = 0 ⇔ Y ⊥⊥ Xj |X-j)

The Benjamini-Hochberg procedure (BHq) applied to the p-values will
essentially control the FDR

Minor caveats:

FDR control not exact (but good enough in practice)

Sparsity not used (reduces power to find important variables)
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Nonlinearity and High Dimensions

Low-dimensional (n ≥ p) generalized linear model

Apply BHq to asymptotic p-values

Can be far from valid in practice

High-dimensional (n < p) generalized linear models

Apply BHq to p-values from

0.00 0.25 0.50 0.75 1.00
Null p−values (n = 500, p = 200)

. Debiased lasso, e.g., Zhang and Zhang (2014), Javanmard and Montanari
(2014), van de Geer et al. (2014), Cai and Guo (2015)

Causal inference, e.g., Belloni et al. (2014), Athey et al. (2016), Farrell (2015)

Inference after selection, e.g., Berk et al. (2013), Lee et al. (2016), Fithian et
al. (2014)

Asymptotic, require sparsity and random design assumptions
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Figure: Variable importance measures for 500 variables and their knockoffs. Colored
points are nulls, grey are non-nulls.
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Figure: Variable importance measures for 500 variables and their knockoffs. Colored
points are nulls, grey are non-nulls.
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Figure: Variable importance measures for 500 variables and their knockoffs. Colored
points are nulls, grey are non-nulls.
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Sequential Independent Pairs Generates Valid Knockoffs

Algorithm 1 Sequential Conditional Independent Pairs

for j = {1, . . . , p} do
Sample X̃j from L(Xj |X-j , X̃1:j−1) conditionally independently of Xj

end

Proof sketch (discrete case):

Denote PMF of (X1:p, X̃1:j−1) by L(X-j , Xj , X̃1:j−1)

Conditional PMF of X̃j |X1:p, X̃1:j−1 is

L(X-j , X̃j , X̃1:j−1)∑
u L(X-j , u, X̃1:j−1)

.

Joint PMF of (X1:p, X̃1:j) is

L(X-j , Xj , X̃1:j−1)L(X-j , X̃j , X̃1:j−1)∑
u L(X-j , u, X̃1:j−1)
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Computation of Second-Order Knockoffs

Cov(X1, . . . , Xp) = Σ, need:

Cov(X1, . . . , Xp, X̃1, . . . , X̃p) =

[
Σ Σ− diag{s}

Σ− diag{s} Σ

]

Equicorrelated (EQ) (fast, less powerful): sEQ
j = 2λmin(Σ) ∧ 1 for all j

Semidefinite program (SDP) (slower, more powerful):

minimize
∑

j |1− sSDP
j |

subject to sSDP
j ≥ 0

diag{sSDP} � 2Σ,

(New) Approximate SDP:

Approximate Σ as block diagonal so that SDP separates
Bisection search scalar multiplier of solution to account for approximation
faster than SDP, more powerful than EQ, and easily parallelizable
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Why Does it Work?

Recall swap exchangeability property: for any j,

[X1, ···,Xj , ···,Xp, X̃ 1, ···,X̃ j , ···,X̃ p]

D
= [X1, ···,X̃ j , ···,Xp, X̃ 1, ···,Xj , ···,X̃ p]

Coin-flipping property for Wj : for any unimportant variable j,(
Zj , Z̃j

)
:=
(
Zj

(
y,
[
· · ·Xj · · ·X̃ j · · ·

])
, Z̃j

(
y,
[
· · ·Xj · · ·X̃ j · · ·

]))
D
=
(
Zj

(
y,
[
· · ·X̃ j · · ·Xj · · ·

])
, Z̃j

(
y,
[
· · ·X̃ j · · ·Xj · · ·

]))
=
(
Z̃j

(
y,
[
· · ·Xj · · ·X̃ j · · ·

])
, Zj

(
y,
[
· · ·Xj · · ·X̃ j · · ·

]))
=
(
Z̃j , Zj

)
Wj = fj(Zj , Z̃j)

D
= fj(Z̃j , Zj) = −fj(Zj , Z̃j) = −Wj
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[X1, ···,Xj , ···,Xp, X̃ 1, ···,X̃ j , ···,X̃ p]

D
= [X1, ···,X̃ j , ···,Xp, X̃ 1, ···,Xj , ···,X̃ p]

Coin-flipping property for Wj : for any unimportant variable j,(
Zj , Z̃j

)
:=
(
Zj

(
y,
[
· · ·Xj · · ·X̃ j · · ·

])
, Z̃j

(
y,
[
· · ·Xj · · ·X̃ j · · ·

]))
D
=
(
Zj

(
y,
[
· · ·X̃ j · · ·Xj · · ·

])
, Z̃j

(
y,
[
· · ·X̃ j · · ·Xj · · ·

]))
=
(
Z̃j

(
y,
[
· · ·Xj · · ·X̃ j · · ·

])
, Zj

(
y,
[
· · ·Xj · · ·X̃ j · · ·

]))
=
(
Z̃j , Zj

)
Wj

D
= −Wj
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Proof of Control

FDR = E
[

#{null Xj selected}
#{total Xj selected}

]

= E
[

#{null positive |Wj | > τ̂}
#{positive |Wj | > τ̂}

]
≈ E

[
#{null negative |Wj | > τ̂}

#{positive |Wj | > τ̂}

]
≤ E

[
#{negative |Wj | > τ̂}
#{positive |Wj | > τ̂}

]

q

τ̂

More precisely:

mFDR = E
[

#{null Xj selected}
q−1 + #{total Xj selected}

]
= E

[
#{null positive |Wj | > τ̂}
q−1 + #{positive |Wj | > τ̂}

]
= E

(
#{null positive |Wj | > τ̂}

1 + #{null negative |Wj | > τ̂}︸ ︷︷ ︸
Supermartingale ≤ 1

with τ̂ a stopping time

· 1 + #{null negative |Wj | > τ̂}
q−1 + #{positive|Wj | > τ̂}︸ ︷︷ ︸
≤ q by definition of τ̂

)
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Simulations in Low-Dimensional Nonlinear Model
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Figure: Power and FDR (target is 10%) for knockoffs and alternative procedures. The
design matrix is i.i.d. N (0, 1/n), n = 3000, p = 1000, and y comes from a binomial
linear model with logit link function, and 60 nonzero regression coefficients having equal
magnitudes and random signs.
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Simulations in High Dimensions
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Figure: Power and FDR (target is 10%) for knockoffs and alternative procedures. The
design matrix is i.i.d. N (0, 1/n), n = 3000, p = 6000, and y comes from a binomial
linear model with logit link function, and 60 nonzero regression coefficients having equal
magnitudes and random signs.
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Simulations in High Dimensions with Dependence
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Figure: Power and FDR (target is 10%) for knockoffs and alternative procedures. The
design matrix has AR(1) columns, and marginally each Xj ∼ N (0, 1/n). n = 3000,
p = 6000, and y follows a binomial linear model with logit link function, and 60 nonzero
coefficients with random signs and randomly selected locations.
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Genetic Analysis of Crohn’s Disease

2007 case-control study by WTCCC

n ≈ 5, 000, p ≈ 375, 000; preprocessing mirrored original analysis

Strong spatial structure: second-order knockoffs generated on genetic
covariance estimate

Entire analysis took 6 hours of serial computation time; 1 hour in parallel

Knockoffs made twice as many discoveries as original analysis

− Some new discoveries confirmed in larger study

− Some corroborated by work on nearby genes: promising candidates

Similar result obtained with X model taken from existing genomic
imputation software

Lucas Janson (Harvard Statistics) Model-X Knockoffs 25 / 25



Genetic Analysis of Crohn’s Disease

2007 case-control study by WTCCC

n ≈ 5, 000, p ≈ 375, 000; preprocessing mirrored original analysis

Strong spatial structure: second-order knockoffs generated on genetic
covariance estimate

Entire analysis took 6 hours of serial computation time; 1 hour in parallel

Knockoffs made twice as many discoveries as original analysis

− Some new discoveries confirmed in larger study

− Some corroborated by work on nearby genes: promising candidates

Similar result obtained with X model taken from existing genomic
imputation software

Lucas Janson (Harvard Statistics) Model-X Knockoffs 25 / 25



Genetic Analysis of Crohn’s Disease

2007 case-control study by WTCCC

n ≈ 5, 000, p ≈ 375, 000; preprocessing mirrored original analysis

Strong spatial structure: second-order knockoffs generated on genetic
covariance estimate

Entire analysis took 6 hours of serial computation time; 1 hour in parallel

Knockoffs made twice as many discoveries as original analysis

− Some new discoveries confirmed in larger study

− Some corroborated by work on nearby genes: promising candidates

Similar result obtained with X model taken from existing genomic
imputation software

Lucas Janson (Harvard Statistics) Model-X Knockoffs 25 / 25



Genetic Analysis of Crohn’s Disease

2007 case-control study by WTCCC

n ≈ 5, 000, p ≈ 375, 000; preprocessing mirrored original analysis

Strong spatial structure: second-order knockoffs generated on genetic
covariance estimate

Entire analysis took 6 hours of serial computation time; 1 hour in parallel

Knockoffs made twice as many discoveries as original analysis

− Some new discoveries confirmed in larger study

− Some corroborated by work on nearby genes: promising candidates

Similar result obtained with X model taken from existing genomic
imputation software

Lucas Janson (Harvard Statistics) Model-X Knockoffs 25 / 25



Genetic Analysis of Crohn’s Disease

2007 case-control study by WTCCC

n ≈ 5, 000, p ≈ 375, 000; preprocessing mirrored original analysis

Strong spatial structure: second-order knockoffs generated on genetic
covariance estimate

Entire analysis took 6 hours of serial computation time; 1 hour in parallel

Knockoffs made twice as many discoveries as original analysis

− Some new discoveries confirmed in larger study

− Some corroborated by work on nearby genes: promising candidates

Similar result obtained with X model taken from existing genomic
imputation software

Lucas Janson (Harvard Statistics) Model-X Knockoffs 25 / 25



Genetic Analysis of Crohn’s Disease

2007 case-control study by WTCCC

n ≈ 5, 000, p ≈ 375, 000; preprocessing mirrored original analysis

Strong spatial structure: second-order knockoffs generated on genetic
covariance estimate

Entire analysis took 6 hours of serial computation time; 1 hour in parallel

Knockoffs made twice as many discoveries as original analysis

− Some new discoveries confirmed in larger study

− Some corroborated by work on nearby genes: promising candidates

Similar result obtained with X model taken from existing genomic
imputation software

Lucas Janson (Harvard Statistics) Model-X Knockoffs 25 / 25



Genetic Analysis of Crohn’s Disease

2007 case-control study by WTCCC

n ≈ 5, 000, p ≈ 375, 000; preprocessing mirrored original analysis

Strong spatial structure: second-order knockoffs generated on genetic
covariance estimate

Entire analysis took 6 hours of serial computation time; 1 hour in parallel

Knockoffs made twice as many discoveries as original analysis

− Some new discoveries confirmed in larger study

− Some corroborated by work on nearby genes: promising candidates

Similar result obtained with X model taken from existing genomic
imputation software

Lucas Janson (Harvard Statistics) Model-X Knockoffs 25 / 25



Checking Sensitivity to Misspecification Error

Concern about misspecification

Y |X X

Canonical (fixed-X) Yes No

Model-X No Yes

Misspecification replicated
in simulation?

No Yes

Model-X: can actually check sensitivity to misspecification error!
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Robustness on Real Data
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Figure: Power and FDR (target is 10%) for knockoffs applied to subsamples of a
chromosome 1 of real genetic design matrix; n ≈ 1, 400.
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