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lceCube

Gigaton neutrino detector located at the south pole.
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lceCube

- Muon neutrinos interact with the surrounding ice/rock and
produce muons that travel through the detector.
- The muon travels a large distance before it decays.
- Produces Cherenkov light as it travels.
- Light is detected by Digital Optical Modules (DOMs)
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lceCube

- As light travels through the ice, it can be scattered or

absorbed.
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Example by Dmitry Chirkin



Light in ice

- Absorption is governed by the absorption parameter a.

I(z) = Iye "
- Scattering is governed by
- The scattering parameter b P(z|no scatter) = e~ %®

- The angular scattering distribution. p(COS AH)
P
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Calibrating IceCube

- Need to figure out how much absorption and scattering is
in the ice.
- DOMs have built in LEDs.
- LED injects known amount of light into the ice.

- Measure the light that makes it to other DOMs, and reconstruct the
scattering and absorption.
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Ray tracing

- lceCube uses ray tracing to simulate light.
- Equivalent to solving the equations of motion for photons.

- Light ray is propagated a random distance

- Direction is changed by a random amount according to the
angular scattering distribution: p(cos 0)

- Ray thrown out (or re-weighted) according to the absorption
probability: e?@x

Length of propagation e g
drawn from /\
p(z) = be i

- lceCube generates millions of rays for each one that finds its
way to a DOM.




Motivation

- Currently, lceCube uses ray tracing to propagate light in
the ice.

- However, most rays never reach a DOM.

- Collecting a significant number of rays on a far away DOM means
simulating a huge number of rays that get lost somewhere in the

\ /Y
- Ray tracers can be run backwards in time, but now most

rays will never reach a light source.

- Ray tracers can'’t constrain both the starting and ending location of
the rays.




Light propagation

- The fundamental problem is that the interesting paths are
highly constrained.

- Both the starting and ending points have to be in ~10cm
regions across distances of ~100m.

- Is there another way to approach this?
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Path integration

- The start and end locations of the ray can be constrained
if the problem is specified in terms of a classical path

integral.
— Probability of path
Space of all paths robaniiity of b4
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Evaluation of the integral

The scattering parameter, b, in IceCube is ~0.3 m-".
Over 120 meters, we expect at least 40 scatters.
Paths are thus 120 dimensional or more.

Numerically integrating over 120 dimensions is not
possible with standard techniques.

However, information can still be extracted about the light
propagation by framing the integrand as a probability distribution:

e—S[f] — p[f] — p(xhylelvava)ZZ? S

This distribution can then be sampled.
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Probability distribution

- The probability distribution has three main parts:

- A factor for the initial vertex.
- A factor for each intermediate vertex.

- A factor for the last vertex, including the probability of detection.

Intermediate segment
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Probability distribution

- The first factor:

- Determined by the light source.
- Here the light source is assumed to be a point.
- Can be extended to line or spherical sources.

p(T0) = b(ro)e™ ™e(ro)

- Here, emission probability distribution chosen to be a von Mises-
Fisher distribution:

— KT E
RE 0

5(r0) B 47 sinh k

Optical depth: 7 = / la(x(s)) + b(x(s))] ds
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Probability distribution

- The second factor:
- Repeated for each intermediate vertex.

- Is the probability of:
- Light scattering at x; after traveling along the line segment, and
- Light changing direction according to the next segment.

p(’ﬁi|’f_’;_1, .. ) — b(fi)G_TiO'(COS A(gz)
— /

Exponential distribution for scattering Angular scattering distribution

1

Optical depth: T, = / [a(x(s)) + b(x(s))] ds T; = Zf}

i=0



Probability distribution

- The third factor:

- Is the probability of:
- Light traveling along the last segment without scattering, and
- The detection efficiency where the light ends on the sphere.

p(f‘f|7?f_1, L) = e_Tfp(ff)(ff -n)o(cos Ab;)
—  / ~

Exponential CDF for the Detection efficiency 2D constraint term
survival of light

- The constraint that the final vertex of the path must lie on a 2D
spherical surface introduces an extra factor of cos(0).
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Probability distribution

- The total probability is the product of these factors:

n—2
p({7i}) = p(7o) | [ [ p(FilFic1, .. )| D(Fr1|Frea,...)
=1

- This PDF is analytic.
- But the CDF is not.
- Inversion sampling cannot be used to draw samples.
- Instead, we can use a Markov Chain Monte-Carlo.
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Industry use

This idea inspired by a CGI rendering technique called Metropolis
light transport.

Computer animation often runs into a similar problem to us, where only a small
fraction of light paths are detectable.

Canonical example is a light source in another room that shines through a door
that is only slightly cracked open.

Left: Rendering
algorithm similar to
Metropolis light
transport.

Right: Standard
path tracing
algorithm.

Slightly
open door

CGl industry mainly renders scenes that are dominated by reflections.
In IceCube, light transport is entirely scattering.

http://raytracey.blogspot.com.es/2010/12/real-time-metropolis-light-transport-on.html



Choice of coordinates

The method of proposing new coordinates has a large
impact on the efficiency of the sampler.

As the angular probability distribution for scattering in ice
is very forward focused, the coordinates are highly
correlated with each other.

In addition, the length scales of the probability distribution
IS a function of the distance between vertices.

A simple normal distribution based proposal function results in very
poor performance.



Choice of coordinates

- One solution is to de-correlate through a
good choice of coordinates.

- Partial de-correlation can be achieved
with bi-spherical coordinates.

- Has two fixed focii (much like our paths

have a fixed start and end points).
Bi-polar coordinates.
Bi-spherical

- Angle between vertices is naturally one ~ coerdinates include
an additional rotation

of the coordinates. around the F, - F,
axis.



Tree based coordinates

- System is defined in a nested form like a tree.

o4, T, 64




Tree based coordinates

- System is defined in a nested form like a tree.

0,, T,, 0
2om e O3, T3, 03




Tree based coordinates

- System is defined in a nested form like a tree.

Oy, Ty, e4 Oz, T7, e7

\\
—~
\\
-~

—
—_—
—
-

o4, T, 6,

N

0,, Ty, 0, O3, Ty, 05

"\ /T

O4 T4 84 05, 75,05 06, T, 8 07,77, 6;




Tree based coordinates

- Specified in terms of only dimensionless quantities, this
system has a natural length scale independence.

- Also has a nice side-effect of correlated movements in the
vertices.
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- Sampling happens in this coordinate space, so an
appropriate Jacobian factor is also needed.



Reversible jump MCMC

- However, the number of places where light scatters is not

fixed.
- Thus the dimensionality of the probability distribution is variable.

- Reversible Jump Markov Chain Monte Carlo can change
the number of dimensions in a probability distribution.
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Intro to reversible jump

- Basic idea is similar to a standard MCMC.

- Given a sample in one vector space:
- Propose a new sample in another vector space.
- Calculate probability at each sample.
- Accept/Reject based on the ratio of probabilities.

- But how do we compare the probabilities?
- They are defined in different vector spaces,
- Which can have different dimensions,
- S0 a simple ratio doesn’'t make sense.



Intro to reversible jump

Assume one vector space is smaller than the other
(If they are the same dimension, the generalised form still works).

Key behind reversible jump is to ‘tack on’ some extra probability
distribution to the smaller vector space.

This pads out the dimensions so they are equal.

We have 1 and 2 dimensional distributions:

po: R - R p:RP >R

To match, we need a 2-1=1 dimensional distribution:
Q:R' >R
The proposal function is then

g:R'®@ R = R?

-
- |

-
m I
R™ |



Intro to reversible jump

- Then the accept/reject is based on the following ratio:

p1(¢)  Pi_o |9g(0, )

=

po()q(q) Po—s1 | 9(8, q)
A N

Jacobian of proposal function.
Proposal rates

Padded probability distribution

- g can be marginalised out later for free.



Reversible jump for light propagation

- A path with N vertices exists in ]RSN

- We wish to propose a new path with N+1 vertices.
- Requires a g with 3 parameters, and a choice of g.

- Then inserts a new vertex between them.
- Position of new vertex based on three random values from q

- g selects a pair of vertices.



Reversible jump for light propagation

- New vertex inserted using bi-spherical coordinates.

- 0, T, B are draw from a q distribution chosen to match the
curvature of p(x) as closely as possible.
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Path length distribution

From the samples created by the MCMC, the probability
distribution for path length can be easily extracted.

lceCube measures photon arrival time, which is directly related to
path length.

P(L < X) = fraction of samples where the length of the path is less
than X.

To validate the method, the length distribution produced
by the path sampler can be compared to one created
using a ray tracer.

An MCMC usually requires a burn-in period, however this
can be partially avoided by seeding the MCMC with the
ray-tracer.



Synthetic test case

- One light source, with two detectors

a=001m"b=03m"

< 120 m S

Light source 0.6 m

<>  Detector A

a=0.01m' b=0.1,0.2,0.3,04,0.5m"

120 m
‘ Detector B



Path length distribution

- Solid: path sampler. Dashed: reference ray tracer
- Ray tracer was run until 5000 samples collected.
- Path sampler was run until results matched the path sampler.
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Path length distribution

- Acceptance rate ~ 20%

Distribution of path lengths (m~1)
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Performance
- Ray tracer is also CPU based to allow a performance
comparison.
b |Raytracer ___|Pathsampler
0.1 m- ~46000 s ~23's
0.2 m* ~78000 s ~74 s
0.3 m- ~99000 s ~232's
0.4 m- ~122000 s ~373's
0.5 m- ~156000 s ~416 s

- Performance improvement of 300 to 1000 times faster.

- The b =0.3 to 0.5 m-" cases are probably most comparable to
conditions in IceCube



Relative light yield

In principle, the relative light yield between the two
detectors can also be calculated.
Absolute light yield is much more difficult.

Relative light yield is given by the ratio of normalisations
for each detector.
This is equivalent to finding a Bayes factor in Bayesian inference.

We can use the geometric estimator:

Salv/pB(2)/pa(T)
p\v/palx)/pe(z)

B —




.
Relative light yield

- Computing E 4 [v/pa(x)/pa(z)] requires both distributions to be
In the same coordlnate system.

- In fact, we actually have identical distributions in different coordinate
systems.

- |If we transform paths from one detector, to corresponding paths
in the other detector, we can have two distributions in the same

coordinate system. pr(2) = pa(T(x))dT/dx
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2
Relative light yield

- To estimate the variance on the light yield
- Ray tracer and path sampler were run four times.
- Standard deviation in parentheses.

b |Raytracer ___|Pathsampler

0.1 m- 0.67(3) 0.64(7)
0.2 m- 0.79(2) 0.77(1)
0.3 m- 0.73(2) 0.76(7)
0.4 m- 0.68(2) 0.64(4)
0.5 m- 0.59(2) 0.50(6)

- Path sampler agrees to within the standard deviation.
- However, it is generally varies more than the ray tracer.



Convergence diagnostics

- Convergence can be estimated by running multiple MCMC
chains and comparing their outputs.

- If the chains have converged, the outputs should look similar.

J

- Can use a metric called the “potential scale reduction factor”.

- Compares the variance of a variable within a chain to the variance
between chains.

- It is difficult to compute this for all coordinates, as the
dimensionality of the chain is always changing.

[

Not converged Converged



Convergence diagnostics

- Instead, the potential scale reduction factor can be computed
for an observable of the path.

- Eg: the total path length.

b [R_______|Acceptance _

0.1 m 1.11 30%
0.2 m 1.08 23%
0.3 m" 1.19 20%
0.4 m 1.12 20%
0.5 m" 1.02 19%

- For robust, automated usage, more diagnostics will be
required.



5
Application to lceCube

- lceCube DOM is half the radius of the synthetic test case
used here.

- An additional factor 4 performance improvement relative to a ray
tracer.

- The lceCube ray tracer is implemented on a GPU.
- Gives 100x performance increase compared to CPU.

- Path sampling will also need a GPU implementation.
- However, MCMC based methods are less amenable to parallelisation.



Other applications

- This approach to simulation is useful when initial and final
states are highly constrained.

- Litmus test:

- Are you throwing out the vast majority of your events (99.9%+) due
to them not meeting one of these constraints?

- Constraints do not have to just be in position.
- Eg: initial and final angle for light passing through a planetary

atmosphere. /

i




Other applications

- Path does not just have to describe light.
- Eg: Simulation of transport of neutrons.

- Constraints could be discrete parameters.

- Eg: Simulation of atmospheric showers.
- Initial condition: particle must be a nucleus.
- Final condition: shower products must reach underground detector.

- Relative light yield between detectors is easier if they
share geometry.

- EQg: Yield between pixels on a CCD is considerably easier.
- They are contiguous and share a plane.
- Does not require a coordinate transformation.



Conclusion

Simulation of light can be posed as a path integral from which
samples can be drawn.

Reproduces the timing distribution of light incident on a
detector.

Up to 1000 times faster than a ray tracer in synthetic test case.

Method is generally applicable to a wide range of problems.
When initial and final states are highly constrained.

arXiv.org > hep-ex > arXiv:1811.04156

High Energy Physics - Experiment

Using path integrals for the propagation of light in a
scattering dominated medium

Gabriel H. Collin
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Angular scattering distribution

- Distribution

o(costp) = fsrpsr(cosy) + (1 — fsr,)puc(cos ),

- Simplified Liu:

29
1—g

11+¢g[1+ cosf
psr(cost) = 5 2 | =

- Henyey-Greenstein:
1 1—g?
0) = =
Prg(cos?) 2 (1+ g% —2gcosh)3/2




.
Detection probability

- Conditional detection probability:

p(f, 1) =exp (3cosw—Incosh(2cosw + 0.7) — 1)

- Chosen to follow IceCube DOM angular response.



Jump distributions

q(s) _ ﬂe—ﬂcoss
2sinh
q(t) = (2 + 2cosht)™?,

q(¢) = %

sin s,



Jump rates

Ty (k)
St ()’

p(n >n+1,k) =

1



Incident angle distribution

- For a smoothly varying b:
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