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What have transients been used for?

› Discovery of the accelerating expansion of the universe (Type Ia Supernovae)

› Detection of gravitational waves (Kilonovae)

› Production of the universe’s heavy elements

Caltech/LIGO NASA/JPL-Caltech



The known transient universe

› The transient universe 
remains largely mysterious

› New surveys will observe 
observe an unprecedented 
number of transients

› Need to prioritize follow-up 
based on class and epoch

› Automated, fast, early 
classifications are required

Kasliwal 2012
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Early classification and follow-up

› We have the opportunity to enable detailed studies of progenitor systems and a deeper 
understanding of a transient’s explosion physics.

› Progenitor and explosion mechanism of SNIa is unknown
› Since we can’t visually examine every alert, we shouldn’t just rely on luck to find 

these events early

Single Degenerate Channel (Wheelan and Iben ‘73)

P. Ruiz-Lapuente University of Barcelona/NASA/ESA A. Hobart NASA

Double Degenerate Channel (Iben & Tutikov ‘84, Webbink ‘84)











Light curve



Simulated dataset - PLAsTiCC

› A comprehensive real training dataset isn’t available
- Cadences/filters/observing conditions vary between surveys
- Not enough well-covered light curves in a range of classes

› Simulated 48000 light curves split between 12 transient 
classes with the observing properties of the Zwicky Transient 
Facility
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Previous classification attempts

› Require full phase coverage of each light curve
- Do not make use of the time-series/sequential 

information

› Very little focus on early classification

› Slow
- Often require user-defined feature extraction before 

classification
- Template matching (slow)

› Often only SNe or SNIa vs non-SNIa classifications
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RAPID: Early and real-time classifications

› RAPID: Real-time Automated Photometric 
IDentification

› Automatically identify transients from within 
a day of the initial alert to the full life-time of 
the light curve

› Classifier is trained on 60% of the dataset 
and is validated on the remaining 40%



RAPID Design

› Takes multiband photometric information and contextual information as input
› Two classifiers: with and without known redshift



Preprocessing light curves

›

› Exclude galactic objects

› Correct for Milky Way reddening

› Correct for time dilation and distance if redshift is known



Preprocessing light curves



Preprocessing training set
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› Estimate explosion time by modelling early part of the light curve with a quadratic 
step function

› Define Pre-explosion (" < "0) and transient phase " ≥ "0

› Sampled the posterior probability ∝ exp − ,
-.

-

› Flat uniform prior on "/: ƒ t/ t ~ U(−35, 0)
› Flat improper prior on other parameters



Preprocessing training set
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Model: Framing the Problem

› Aim: Model a function that maps an input multi-passband light curve matrix, !"#, for 
transient $ up to a discrete time % onto an output probability vector

› To quantify the discrepancy between the model probabilities        and class labels
for class &, we define a weighted categorical cross-entropy (∝ negative log-likelihood of 
the probabilities of a categorical distribution)

Where the label has a pre-explosion and transient phase:



Model: Framing the Problem

› We define the global objective function as

› We use a deep recurrent neural network to determine the optimal values of the 
parameters, and effectively minimise the objective function with a Stochastic 
Gradient Descent Optimisation routine: Adam (Kingma & Ba 2015)



Deep Recurrent Neural Network
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Deep Recurrent Neural Network



Deep Recurrent Neural Network



Feedforward Neural Network 
(Multilayer Perceptron)

› The value of each node/neuron 
is computed from all the lines 
connected to it

› Each line has an associated 
weight

› Each node has an associated 
bias

Black Box



Activation function

› Introduces non-linearity into the 
network
- Important for stacking layers

› Can keep output values bounded



ReLU Function Sigmoid function Tanh function

Fast, minimal risk of vanishing 
gradient problem

Good for classifiers Steeper gradient strength than 
sigmoid

Activation function

! " = max(0, ") ! " = 2
1 + ./01 − 1! " = 1

1 + ./1



Feedforward Neural Network 
(Multilayer Perceptron)

› Feedforward NN only move 
in one direction
- The information never

touches a node twice
› Feed-Forward Neural 

Networks, have no memory 
of the input they received 
previously and are therefore 
bad in predicting what’s 
coming next



Recurrent Neural Network

› RNNs use backpropagation through time to update network weight parameters
› They are able to remember information in a sequence



Recurrent Neural Network

› Each node has two inputs
1. Current timestep input
2. Output of previous 

node

› Can retain a memory of 
previous time steps



Recurrent Neural Network



Recurrent Neural Network



Recurrent Neural Network

› The disadvantage of a standard RNN is that as the time steps increase, it can’t derive 
context from timesteps that are too far behind

› Long Short Term Memory networks (LSTMs) were introduced to deal with this long-term 
dependency problem (Hocreiter & Schmidhuber, 1997)



Basic RNN



Long Short Term Memory Network (LSTM)



LSTM – The cell state

› The cell state passes between timesteps
- It can flow between nodes unchanged, or 

can be updated with gates

› Gates are composed of a sigmoid neural 
network layer and pointwise multiplication 
operation

› The LSTM has three gates, to protect and 
control the cell state:
- 1. Forget gate, 2. Update gate, 3.Output gate



LSTM – Forget gate

› We take the input from current time step and the learned representation from previous 
time step and concatenate them

› The sigmoid function outputs a value between 0 and 1, we use this value to determine
how much of previous cell state to remember



LSTM – Update gate

› First, a sigmoid layer called decides which values we’ll update. 
› Next, a tanh layer creates a vector of new candidate values,      , that could be added to 

the state



LSTM – Output gate



Gated Recurrent Unit (GRU) Network

› LSTMs can be computationally expensive. GRUs (Cho, et al., 2014) are similar, but 
reduce the training time

› Performance is similar



RAPID



Dropout Regularisation

› Reduces overfitting
› It forces a neural network to learn more robust features that are useful in conjunction with 

many different random subsets of the other neurons
› It roughly doubles the number of iterations required to converge

Srivastava, Nitish, et al
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Batch Normalisation

› Normalises the parameters in 
the network

› Improves learning speed

› Also has slight regularization 
effect by introducing noise to 
each hidden layer’s activations

› Adds two trainable parameters 
to each layer

Ioffe & Szegedy 2015



Softmax Regression



Deep Recurrent Neural Network



Classification performance



Confusion matrices



Classification Performance
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Applied to real data



Python interface

› pip install astrorapid

› https://astrorapid.readthedocs.io

https://astrorapid.readthedocs.io/


Conclusions

› RAPID enables prioritized follow-up of new large-scale transient surveys based on 
transient class and epoch

› Early classification: The use of a Recurrent Neural Network allows us to classify 
transients as a function of time

› We can identify 12 different transient classes within days of its explosion, despite low 
S/N data and limited colour information

› It’s fast: Can classify tens of thousands of events that will be discovered in LSST and 
ZTF within a few seconds


