Solar Spectral Analyses with Uncertainties in Atomic Physical Models

Xixi Yu

Imperial College London

xixi.yu16@imperial.ac.uk

3 April 2018

Xixi Yu (Imperial College London)

Statistical methods in Astrophysics

3 April 2018 1 / 35

Joint work with the International Space Science Institute (ISSI) team

"Improving the Analysis of Solar and Stellar Observations"

The Solar Corona

- The solar corona is a complex and dynamic system
- Measuring physical properties in any solar region is important for understanding the processes that lead to these events

Figure: The photospheric magnetic field measured with HMI, million degree emission observed with the AIA $\rm Fe~IX$ 171,Å channel, and high temperature loops observed with XRT

Aim

- We want to infer physical quantities of the solar atmosphere (density, temperature, path length, etc.), but we only observe intensity
- Inferences rely on models for the underlying atomic physics
- How to address uncertainty in the atomic physics models?

Figure: Hinode spacecraft.

- n_k ¹: number of free electrons per unit volume in plasma
- T_k: electron temperature
- d_k : path length through the solar atmosphere
- $\theta_k = (\log n_k, \log d_k)$
- *m*: index of the emissivity curve
- Expected intensity of line with wavelength λ :

$$\epsilon_{\lambda}^{(m)}(\mathbf{n}_k,\mathbf{T}_k)\mathbf{n}_k^2\mathbf{d}_k$$

• $\epsilon_{\lambda}^{(m)}(n_k, T_k)$ is the plasma emissivity for the line with wavelength λ in pixel k

¹Subscript k is the pixel index

Data: Observed Intensity

• Data from the Extreme-Ultraviolet Imaging Spectrometer (EIS) on *Hinode* spacecraft.

Figure: Example EIS spectrum of seven Fe XIII lines

- Spectral lines with wavelengths $\Lambda = \{\lambda_1, \dots, \lambda_J\}$
- Observed intensities for K pixels and J wavelengths:

$$\hat{D} = \{D_k = (I_{k\lambda_1}, \dots, I_{k\lambda_J}), k = 1, \dots, K\}$$

• Standard deviation $\sigma_{k\lambda_i}$ are also known

Uncertainty: Emissivity

- Emissivity: how strongly energy is radiated at a given wavelength
- Simulated from a model accounting for uncertainty in the atomic data
- Suppose a collection of *M* emissivity curves are known

$$\mathcal{M} = \{\epsilon_{\lambda}^{(m)}(\mathbf{n}_k, \mathbf{T}_k), \lambda \in \Lambda, m = 1, \dots, M\}$$

Figure: A simplified level diagram for the transitions relevant to the 7 lines considered here.

• Fully Bayesian Model I:

- Use **Bayesian Methods** to incorporate information in the data for narrowing the uncertainty in the atomic physics calculation
- There are only M = 1000 equally likely emissivity curves as a priori
- Solution:
 - Obtain a sample of ${\mathcal M}$ that accounts for the uncertainty in the atomic data, ${\it m}$
 - *m* is treated as an unknown parameter
 - Obtain sample from p(m, θ | D) via two-step Monte Carlo (MC) samplers or Hamiltonian Monte Carlo (HMC)
- Conclusions:
 - We are able to incorporate uncertainties in atomic physics calculations into analyses of solar spectroscopic data

Preceding Work: Fully Bayesian Model I

Independent prior distributions

$$p(m, \theta_k) = p(m) \ p(\log n_k) \ p(\log d_k) \tag{1}$$

$$m \sim \text{DiscreteUniform}(\{1, \dots, M\})$$
 (2)

$$\log_{10} n_k \sim \mathsf{Uniform}(\mathsf{min} = 7, \mathsf{max} = 12) \tag{3}$$

$$\log_{10} d_k \sim \text{Cauchy(center} = 9, \text{scale} = 5)$$
 (4)

Likeihood $L(m, \theta_k \mid D_k)$

$$I_{k\lambda} \mid m, n_k, d_k \stackrel{\text{indep}}{\sim} \mathsf{Normal}\left(\epsilon_{\lambda}^{(m)}(n_k, T_k)n_k^2 d_k, \sigma_{k\lambda}^2\right), \quad \text{for } \lambda \in \Lambda$$
(5)

Joint posterior distribution

$$p(m, \theta_k \mid D_k) \propto L(m, \theta_k \mid D_k) p(m, \theta_k),$$

Xixi Yu (Imperial College London)

(6)

Preceding Work: Pragmatic VS Fully Bayesian Models

Pragmatic Bayesian posterior distribution

$$p(m, \theta_k \mid D_k) = p(\theta_k \mid D_k, m) \ p(m).$$
(7)

Fully Bayesian posterior distribution

$$p(m,\theta_k \mid D_k) = p(\theta_k \mid D_k, m) \ p(m \mid D_k).$$
(8)

Xixi Yu (Imperial College London)

Statistical methods in Astrophysics

3 April 2018 10 / 35

Preceding Work: Multimodal Posterior Distributions

- Bimodal posterior distributions occur
 - Two modes correspond to two emissivity curves
 - Inaccurate relative size of two modes in HMC
- Reason: Not enough emissivity curves
- Challenge: Sparse selection of emissivity curves

Preceding Work: Multimodal Posterior Distributions

- A computational issue: Inaccurate relative size of two modes
- A computational solution: Adding a few synthetic replicate emissivity curves with augmented set *M*^{aug} ⊃ *M*:

$$\mathcal{M}^{\mathrm{aug}}/\mathcal{M} = \{w_1 * \mathsf{Emis}_{471} + w_2 * \mathsf{Emis}_{368}\},\$$

where $(w_1, w_2) = (0.75, 0.25), (0.50, 0.50), \& (0.25, 0.75)$

Come up with a way to efficiently represent

the high dimensional joint distribution

of the uncertainty of the emissivity curves.

Comparison of Current and Preceding Models

Model I (Done)

• Joint posterior distribution: $p(m, \theta_k \mid D_k) \propto L(m, \theta_k \mid D_k) p(m) p(\theta_k)$

• $p(m) = \frac{1}{M}$

 A computational trick: adding a few synthetic replicate emissivity curves

Model II (On going ...)

• Joint posterior distribution:

 $p(C(r_k), \theta_k \mid D_k) \propto L(C(r_k), \theta_k \mid D_k) \ p(r_k, \theta_k)$

- r_k is the PCA transformation of emissivity curve, C
- p(r) is a high dimensional **distribution**
- An algorithm: summarizing the distribution with multivariate standard Normal distribution via **principal component analysis (PCA)**

- In log space
- J = 16 PCs capture 99% of total variation
- PCA generated emissivity curve replicate based on the first J PCs

$$C^{\mathsf{rep}} = \bar{C} + \sum_{j=i}^{J} r_j \beta_j v_j,$$

where

- \bar{C} : average of all 1000 emissivity curves
- r_j: random variate generated from the standard Normal distribution
- β_j^2 , v_j : eigenvalue and eigenvector of component j in the PCA representation

Plot of Original Emissivity Curves

Top panel:

- Each part corresponds one of the seven lines
- Light gray area: all 1000 emissivities
- Dark gray area: middle 68% of emissivities
- Solid black curve: \bar{C}

Bottom panel:

curves

- Same as above, but using $C \overline{C}$
- Colored dashed curves: six randomly selected

Xixi Yu (Imperial College London)

3 April 2018 16 / 35

Plot of PCA Generated Emissivity Curves

Xixi Yu (Imperial College London)

3 April 2018 17 / 35

Plot of Eigenvectors

Figure: Plot of eigenvectors of 7 lines along log n grid for the first 16 PCs.

Xixi Yu (Imperial College London)

Statistical methods in Astrophysics

Principal Component Analysis

Figure: Plot of eigenvectors of 7 lines along log n grid for the first 16 PCs.

Xixi Yu (Imperial College London)

Statistical methods in Astrophysics

3 April 2018 19 / 35

Use **Stan** (mc-stan.org) to sample

$$(r^{(l)}, \theta^{(l)}) \sim p(r, \theta \mid D), \text{ for } l = 1, ..., L.$$

where

•
$$p(r, \theta \mid D) \propto p(D \mid r, \theta) p(r) p(\theta)$$

- *p*(*r*) ∼ Normal(0, *I*)
- $\log_{10}{\rm n} \sim {\sf Uniform}({\sf min}=7,{\sf max}=12)$
- $\log_{10} d \sim \text{Cauchy(center} = 9, \text{scale} = 5)$

Alg I: Compare Stan Results From Model I & Model II

- The results from Model II (white hist) can **mitigate** the multimodal from Model I (gray hist)
- Problem: Stan is time-consuming

3 April 2018 21 / 35

Alg I: Scatterplot matrices from Stan Results

Xixi Yu (Imperial College London)

Statistical methods in Astrophysics

3 April 2018 22 / 35

Alg I: Scatterplot matrices from Stan Results

Xixi Yu (Imperial College London)

Statistical methods in Astrophysics

3 April 2018 23 / 35

Alg I: Scatterplot matrices from Stan Results

Xixi Yu (Imperial College London)

Statistical methods in Astrophysics

3 April 2018 24 / 35

Metropolis Hastings (MH) within Fully Bayesian Gibbs Sampler

Step 1: For
$$j = 1, ..., J$$
, sample $r_j^{[prop]} \sim \mathcal{N}(\mu = 0, sd = 1)$.
Step 2: Set $r^{[prop]} = (r_1^{[prop]}, ..., r_J^{[prop]})$ and
 $C^{[prop]} = \bar{C} + \sum_{j=1}^J r_j^{[t+1]} \beta_j v_j$.
Step 3: Sample $\theta^{[prop]} \sim Q_{\mathcal{MVN}}(\theta | r^{[prop]})$.
Step 4: Compute

$$\rho = \frac{p(C^{[\text{prop}]}, \theta^{[\text{prop}]}|D) \ Q_{\mathcal{MVN}}(\theta^{(t)}, r^{(t)})}{p(C^{(t)}, \theta^{(t)}|D) \ Q_{\mathcal{MVN}}(\theta^{[\text{prop}]}, r^{[\text{prop}]})}$$
(9)

Alg II: Independence Sampler

Use a multivariate normal distribution $Q_{MVN}(\theta, r)$ to fit a sample obtained from the **pragmatic** Bayesian posterior.

- Suppose we have the pragmatic Bayesian samples, $\{(r_{pB}^{(1)}, \theta_{pB}^{(1)}), \dots, (r_{pB}^{(T)}, \theta_{pB}^{(T)})\}$
- Set the multivariate normal distribution $Q_{\mathcal{MVN}}(heta,r)$ to be,

$$\begin{pmatrix} \theta \\ r \end{pmatrix} \sim \operatorname{Normal} \left(\left(\begin{array}{c} \hat{\mu}_{\theta} \\ \mu_{r} \end{array} \right), \left(\begin{array}{c} \hat{\Sigma}_{11} & \hat{\Sigma}_{12} \\ \hat{\Sigma}_{21} & \Sigma_{22} \end{array} \right) \right)$$

- $r \sim \text{Normal}(\mu_r = 0, \Sigma_{22} = I)$
- $\hat{\mu}_{\theta}$, $\hat{\Sigma}_{11}$, $\hat{\Sigma}_{12}$: sample mean and sample variance of θ obtained from the pragmatic Bayesian sample, sample covariance between θ and r
- The conditional distribution of θ given r is, $Q_{\mathcal{MVN}}(\theta \mid r) \sim \text{Normal}(\hat{\mu}_{\theta} + \hat{\Sigma}_{12}r, \hat{\Sigma}_{11} - \hat{\Sigma}_{12}\hat{\Sigma}_{21})$ achieved via multivariate normal linear regression.

通 ト イヨ ト イヨ ト

- Normal(0, I)
- Normal(*r*⁽⁴⁷¹⁾, *I*) or Normal(*r*⁽³⁶⁸⁾, *I*)
- Mixture distribution: $p \operatorname{Normal}(r^{(471)}, \sigma^2 I) + (1 - p) \operatorname{Normal}(r^{(368)}, \sigma^2 I)$ where p and σ are tuning parameters
- Normal($\mu_{Stan}, \Sigma_{Stan}$) or Normal($\mu_{Stan}, \Sigma_{Stan} * 2$)
- Student *t*₄

$r \sim Normal(0, I)$

Xixi Yu (Imperial College London)

Statistical methods in Astrophysics

3 April 2018 28 / 35

 $r \sim \text{Normal}(r^{(471)}, I)$ or $\text{Normal}(r^{(368)}, I)$

Xixi Yu (Imperial College London)

Statistical methods in Astrophysics

 $r \sim p \text{ Normal}(r^{(471)}, \sigma^2 I) + (1 - p) \text{ Normal}(r^{(368)}, \sigma^2 I)$ where p = 0.5 and $\sigma = 2$ are tuning parameters

$r \sim \text{Normal}(\mu_{Stan}, \Sigma_{Stan}) \text{ or Normal}(\mu_{Stan}, \Sigma_{Stan} * 2)$

Xixi Yu (Imperial College London)

Statistical methods in Astrophysics

 $r \sim$ Student t_4 $heta | r \sim$ multivariate t linear regression with df = 4

Statistical methods in Astrophysics

Use Random Walk

Step 1: For
$$j = 1, ..., J$$
, sample $r_j^{[prop]} \sim \mathcal{N}(\mu = r_j^{[t]}, sd = \sigma_r)$.
Step 2: Set $r^{[prop]} = (r_1^{[prop]}, ..., r_J^{[prop]})$ and
 $C^{[prop]} = \bar{C} + \sum_{j=1}^J r_j^{[t+1]} \beta_j v_j$.
Step 3: Sample $\theta^{[prop]} \sim Q_{\mathcal{MVN}}(\theta | r^{[prop]})$.
Step 4: Compute

$$\rho = \frac{p(C^{[\text{prop}]}, \theta^{[\text{prop}]}|D) \ Q_{\mathcal{MVN}}(\theta^{(t)} \mid r^{(t)})}{p = (C^{(t)}, \theta^{(t)}|D) \ Q_{\mathcal{MVN}}(\theta^{[\text{prop}]} \mid r^{[\text{prop}]})}$$
(10)

Alg III

Tuning parameter $\sigma = 0.6$ r is initialized from Normal($r^{(471)}, I$)

Statistical methods in Astrophysics

Alg IV: Mixture of Independence Sampler and Random Walk Sampler (TBD)

- Step 1: Sample $u_1 \sim \text{Uniform}(0,1)$
- Step 2: If $u_1 < p_m$, go to Alg III, Random Walk Sampler else, go to Alg II, Independence Sampler
 - Two tuning parameters p_m and σ_r