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Constraining σ8 and Ωm with the  
Velocity Distribution Function 
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In order to obtain the observed 
value of an average Doppler 
effect of 1000 km/s or more, the 
average density in the Coma 
system would have to be at 
least 400 times larger than that 
derived on the grounds of 
observations of luminous matter.  
If this would be confirmed we 
would get the surprising result 
that dark matter is present in 
much greater amount than 
luminous matter. 
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M(σ) POWER LAW 



M(σ) Power Law 
Reasons for scatter: 
•  triaxiality 
•  infalling matter or 

mergers 
•  galaxy selection 
•  bias between dark 

matter particle 
dispersion & galaxy 
dispersion 



Signatures in the Velocity PDF 
•  Infalling matter & 

mergers lead to 
flatter velocity 
distributions 



THE CLUSTER CATALOG 



Ideal Cluster Catalog 



Impure Cluster Catalog 
Line of sight velocity 

Aperture 



THE HALO MASS 
FUNCTION 



THE HALO MASS 
FUNCTION 
It’s impolite to ask a galaxy cluster its mass. 



Halo Mass Function  
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Eddington Bias in Dynamical Masses 
Scatter in the M(σ) relationship, coupled with the steeply-
declining HMF, alters the observed HMF. 
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Halo Mass Function  
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χ2 analysis for constraining σ8 & Ωm 
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• Compare the mock 
observed HMF to that 
predicted by an analytic 
HMF. 



Constraining Cosmological Models 
• Measurement error biases to low Ωm and high σ8. 
•  Fiducial model lies outside of the 99% likelihood contour. 
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A FORWARD MODELING 
APPROACH:  
The Velocity Distribution 
Function (Mocks) 



Velocity PDF 
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Velocity Distribution Function 

• Sum the most massive or the richest - or simply the 
observed - clusters in a volume 
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Velocity Distribution Function  
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Velocity Distribution Function  
with velocity error 
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χ2 analysis for constraining σ8 & Ωm 
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Constraining Cosmological Models 
with the VDF 

• Constraints can be approximated as a band in the Ωm-σ8 
plane. 
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• Measurement error introduces a nearly-negligible bias. 

Constraining Cosmological Models 
with the VDF 
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Constraining Cosmological Models 
with the VDF 
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• HMF and VDF give similar constraints when true cluster 
properties are known. 

• VDF is less sensitive to measurement error than the HMF. 



PRELIMINARY COSMOLOGICAL 
CONSTRAINTS WITH THE  
VDF APPLIED TO  
HECS-SZ CLUSTERS 



HeCS-SZ Clusters 
• Spectroscopic follow up of an SZ-complete survey of 83 

clusters 
• Selected from SDSS DR6 and DR10 
•  z<0.3 with a footprint of 20%-28% of the full sky 

 
HeCS-SZ: the Hectospec Survey of Sunyaev-Zeldovich-
Selected Clusters. 
Kenneth J. Rines, Margaret J. Geller, Antonaldo Diaferio, 
and Ho Seong Hwang 
2016 Astrophysical Journal, 819, 1.   



Interlopers 
Line of sight velocity 

Aperture 



HeCS-SZ Clusters 
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HeCS-SZ Clusters 
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HeCS-SZ Clusters 
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Radial Distribution of Galaxies 
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VDF 
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VDF 
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Planck 2016 CMB & SZ Cluster 
Constraints 



Highlights 
•  Forward modeling with the Velocity Distribution Function 

reduces bias in cosmological constraints caused by 
measurement error. 

• Preliminary analysis of the HeCS-SZ clusters shows a 
tension with the CMB TT constraints (but in agreement 
with other LSS probes). 


