Computational Challenges from Imaging X-ray Polarimetry

Herman L. Marshall (MIT) and the IXPE Team

Outline

- Introduction to Polarimetry
- IXPE: the Imaging X-ray Polarization Explorer
- Computational Challenges
 - Basic measurements
 - Event track measurement Machine Learning?
 - Modeling in 7 dimensions (E, t, α , δ , I, Q, U) nonparametric Bayesian priors?
 - Testing models on event lists nearest neighbor testing, Approximate Bayesian Computation?

Polarimetry Probes of Physics

- Polarization measurements allow us to study:
 - Scattering
 - Magnetic fields
 - Strong gravity

Basics of Polarized Light

- All light waves are polarized
- Stokes parameters are handy:
 - I = total intensity
 - Q, U are orthogonal linearly polarized parts
 - V is circular (+ or -) polarized intensity
- Common alternative: Π , ϕ
 - $\Pi = (Q^2 + U^2)^{1/2} / I$
 - $\phi = \tan^{-1}(Q/U)$
- A beam is "unpolarized" if the photon <u>set</u> is randomly polarized (Π = V = 0)
- MDP = 'Minimum Detectable Polarization' (99% conf.): $3.035\sqrt{2}\frac{\sqrt{c_s + c_B}}{c_s}$
- All photons also have energy (E), time (t), sky position (α , δ)

Modulation of Polarized Signals

Modulation Factor = $\mu = (C_{max}-C_{min})/(C_{max}+C_{min})$

AGN Jet Polarimetry (M 87)

AGN Jet Polarimetry (M 87)

Testing Quantum Electrodynamics with Magnetars

- Magnetars: slowly rotating neutron stars with B > 10¹⁴ G
- Magnetized vacuum is birefringent
- Flux is unaffected but polarization fraction and angle change with spin phase

Imaging Polarimetry

Imaging Polarimetry

A Science Goal: Neutron Star Atmospheres

- Π and φ depend on B-field direction and N-star orientation (pulse phase)
- Atmospheres show features now found in spectra of isolated N-stars
- Polarization data would distinguish features in spectra
- Atmosphere models are used to determine R^2 , g to give M,R

Imaging X-ray Polarization Explorer (IXPE)

9

IXPE Gas Pixel Detector

Event Results

- Event time (to 10 μ s), image, pulses measured
- Empirical method finds event origin, direction

Polarization from modulation histogram and calibrated modulation factor

80

60

20

2

Modulation factor (%)

12

The Standard Statistics

- Data: X = {x_i, y_i, dPH_i, t_i, $\alpha_T(t_i)$, $\delta_T(t_i)$ }, i = 1...N tracks
- Process X to $Y = \{\alpha_i, \delta_i, PH_i, t_i, \phi_i\}$
- Use known distribution functions:
 - RMF: R(PH | E) ~ G[gE, σ (E)]
 - PSF: $F(\alpha, \delta, | \alpha_0, \delta_0)$
 - Polarization: $\lambda(E, \phi) = A(E) [I + \mu(E) Q \cos \phi + \mu(E) U \sin \phi]$
 - Generally, I = f(E, t, α_0 , δ_0), Q = g(E, t, α_0 , δ_0), U = h(E, t, α_0 , δ_0)
 - Data are poisson: $Y \sim P(R^*F^*\lambda)$

Imaging Polarimetry

Standard Analysis

$$\lambda_{ij} = [1 + \mu_j (q \cos 2\psi_i + u \sin 2\psi_i)] f_j A_j T \Delta E \Delta \psi$$

$$\begin{aligned} \text{define } \alpha_j &= f_j A_j T, \ \beta_j = \alpha_j \mu_j, \ s_i = \sin 2\psi_i, \ c_i = \cos 2\psi_i \sum_i s_i = \sum_i c_i = 0 \\ \chi^2 &= \sum_i \sum_j \frac{(C_{ij} - \lambda_{ij})^2}{\sigma_{ij}^2} = \frac{1}{\sigma^2} \sum_i \sum_j (C_{ij} - [\alpha_j - q\beta_j c_i - u\beta_j s_i] \Delta E \Delta \psi)^2 \\ \hat{\alpha}_j &= \frac{\sum_i C_{ij}}{2\pi \Delta E} \ \hat{f}_j = \frac{\sum_i C_{ij}}{2\pi T \Delta E A_j} \\ \sigma_{ij} &= \sigma \quad \Delta' = \Delta \phi \Delta E \end{aligned} \qquad \begin{aligned} \hat{q} &= \frac{\sum_i c_i \sum_j \beta_j C_{ij}}{\Delta' \sum_i c_i^2 \sum_j \beta_j^2} \ = \frac{n \sum_i c_i \sum_j \mu_j C_{ij} \sum_k C_{kj}}{\sum_i c_i^2 \sum_j \mu_j^2 (\sum_k C_{kj})^2} \\ \hat{u} &= \frac{\sum_i s_i \sum_j \beta_j C_{ij}}{\Delta' \sum_i s_i^2 \sum_j \beta_j^2} \ = \frac{n \sum_i s_i \sum_j \mu_j C_{ij} \sum_k C_{kj}}{\sum_i s_i^2 \sum_j \mu_j^2 (\sum_k C_{kj})^2} \end{aligned}$$

define
$$C_j = \sum_k C_{kj}$$
 and note that generally $\sum_i s_i^2 = \sum_i c_i^2 = n/2$, so
 $\hat{q} = \frac{2\sum_i c_i \sum_j \mu_j C_j C_{ij}}{\sum_j \mu_j C_j C_{jj}}$
 $\hat{u} = \frac{2\sum_i s_i \sum_j \mu_j C_j C_{ij}}{\sum_j \mu_j C_j C_{ij}}$

With uncertainties, but $q\mu \ll 1$, $u\mu \ll 1$

$$\hat{\alpha}_{j} = \frac{1}{\Delta'} \frac{\sum_{i} C_{ij} / \sigma_{ij}^{2}}{\sum_{i} 1 / \sigma_{ij}^{2}} \equiv \frac{w_{j}}{\Delta'} \quad \hat{q}_{j} = \frac{2\sum_{i} c_{i} C_{ij}}{\mu_{j} C_{.j}} \qquad \hat{q} = \sum_{j} w'_{j} \hat{q}_{j} \quad w'_{j} = \frac{\mu_{j}^{2} w_{j}^{2} \sum_{i} c_{i}^{2} / \sigma_{ij}^{2}}{\sum_{k} \mu_{k}^{2} w_{k}^{2} \sum_{i} c_{i}^{2} / \sigma_{ik}^{2}} \\ \hat{u}_{j} = \frac{2\sum_{i} s_{i} C_{ij}}{\mu_{j} C_{.j}} \qquad \hat{u} = \sum_{j} w''_{j} \hat{u}_{j} \quad w''_{j} = \frac{\mu_{j}^{2} w_{j}^{2} \sum_{i} s_{i}^{2} / \sigma_{ij}^{2}}{\sum_{k} \mu_{k}^{2} w_{k}^{2} \sum_{i} s_{i}^{2} / \sigma_{ij}^{2}}$$

Imaging Polarimetry

 $2\sum c \sum \mu C C \mu$

9/ 9

Standard Analysis, Unbinned

 $\lambda(E,\psi) = [1 + \mu_E(q\cos 2\psi + u\sin 2\psi)]f_E A_E T dE d\psi$

$$S = -2\ln L = -2\sum_{i} \ln \lambda(E_{i}, \psi_{i}) + 2\int_{0}^{2\pi} f_{E}A_{E}dE \int_{0}^{2\pi} d\psi [1 + \mu(E)(q\cos 2\psi + u\sin 2\psi)]$$

= $-2\sum_{i} \ln f_{i} - 2\sum_{i} \ln(1 + q\mu_{i}\cos 2\psi_{i} + u\mu_{i}\sin 2\psi_{i}) + 4\pi T \int_{0}^{2\pi} f_{E}A_{E}dE + \text{constant}$

define $c_i = \mu_i \cos 2\psi_i$ and $s_i = \mu_i \sin 2\psi_i$ $w_i = (1 + \hat{q}c_i + \hat{u}s_i)^{-1}$

$$0 = \sum_{i} \frac{s_i}{1 + \hat{q}c_i + \hat{u}s_i} = \sum_{i} w_i s_i$$
$$0 = \sum_{i} \frac{c_i}{1 + \hat{q}c_i + \hat{u}s_i} = \sum_{i} w_i c_i$$

for $\hat{q} \ll 1$ and $\hat{u} \ll 1$

$$\sum s_i = \hat{u} \sum s_i^2 + \hat{q} \sum c_i s_i \quad \hat{u} = \frac{\sum s_i \sum c_i^2 - \sum c_i \sum c_i s_i}{\sum s_i^2 \sum c_i^2 - (\sum c_i s_i)^2} \approx \frac{\sum s_i}{\sum s_i^2} \qquad \sigma_u^2 \approx \frac{2}{\frac{\partial^2 S}{\partial u^2}} \approx \frac{1}{\sum s_i^2}$$
$$\sum c_i = \hat{u} \sum c_i s_i + \hat{q} \sum c_i^2 \quad \hat{q} = \frac{\sum c_i \sum s_i^2 - \sum s_i \sum c_i s_i}{\sum s_i^2 \sum c_i^2 - (\sum c_i s_i)^2} \approx \frac{\sum c_i}{\sum c_i^2} \qquad \sigma_q^2 \approx \frac{2}{\frac{\partial^2 S}{\partial q^2}} \approx \frac{1}{\sum c_i^2}$$

The Track Problem

- Track measurement is empirical
 - Tracks have randomness
 - Bulk of PH is at (uninteresting) end of track
 - Low E tracks are short
 - Some events are not considered
- Tracks are only probabilistically related to X-ray polarization
- Tracks are measured independently

Imaging Polarimetry

16

CHASC 2/6/18

Track Algorithm Optimization

- MDP ~ 1/($\mu \epsilon^{1/2}$)
- Algorithm has parameters that trade off μ and ϵ for best $\mu~\epsilon^{1/2}$

Imaging Polarimetry

XTENSION=	'BINTABLE'	/	binary table extension
BITPIX =		8 /	8-bit bytes
NAXIS =		2 /	2-dimensional binary table
NAXIS1 =		52 /	width of table in bytes
NAXIS2 =		85995 /	number of rows in table
PCOUNT =		97967480 /	size of special data area
GCOUNT =		1 /	one data group (required keyword)
TFIELDS =		12 /	number of fields in each row
TTYPE1 =	'PAKTNUMB'	1	label for field 1
TFORM1 =	'1J '	1	data format of field: 4-byte INTEGER
TUNIT1 =	т — т	1	physical unit of field
TTYPE2 =	'TRG ID '	1	label for field 2
TFORM2 =	'1J - '	1	data format of field: 4-byte INTEGER
TUNIT2 =	т. — т.	1	physical unit of field
TTYPE3 =	'SEC '	1	label for field 3
TFORM3 =	'1K '	1	data format of field: 8-byte INTEGER
TUNIT3 =	н н. Н	1	physical unit of field
TTYPE4 =	'MICROSEC'	1	label for field 4
TFORM4 =	'1J '	1	data format of field: 4-byte INTEGER
TUNIT4 =	т — т	1	physical unit of field
TTYPE5 =	'TIME '	1	label for field 5
TFORM5 =	'1D '	1	data format of field: 8-byte DOUBLE
TUNIT5 =	н н. н.	1	physical unit of field
TTYPE6 =	'MIN COL '		label for field 6
TFORM6 =	'1I '	1	data format of field: 2-byte INTEGER
TUNIT6 =	т. — т.	1	physical unit of field
TTYPE7 =	'MAX COL '	1	label for field 7
TFORM7 =	'1I '	1	data format of field: 2-byte INTEGER
TUNIT7 =	т. — т.	1	physical unit of field
TTYPE8 =	'MIN ROW '	/	label for field 8
TFORM8 =	'1I '	/	data format of field: 2-byte INTEGER
TUNIT8 =	т т	1	physical unit of field
TTYPE9 =	'MAX ROW '	1	label for field 9
TFORM9 =	'1I '	/	data format of field: 2-byte INTEGER
TUNIT9 =	т т.	/	physical unit of field
TTYPE10 =	'ROI SIZE'	1	label for field 10
TFORM10 =	'1J '	/	data format of field: 4-byte INTEGER
TUNIT10 =	т т.	/	physical unit of field
TTYPE11 =	'ERR SUM '	1	label for field 11
TFORM11 =	'1J '	/	data format of field: 4-byte INTEGER
TUNIT11 =	н н	/	physical unit of field
TTYPE12 =	'PIX PHAS'	/	label for field 12
TFORM12 =	'PI(<u>3</u> 256)'	1	data format of field: variable length array
TUNIT12 =		1	physical unit of field
EXTNAME =	'EVENTS '	1	name of this binary table extension
END			•

					MILL ET TIS
XTENSION= 'BINTABLE'	/ binary table extension				CTF OF THE CHT
BITPIX =	8 / 8-bit bytes				of TE-
NAXIS =	2 / 2-dimensional binary table				/
NAXIS1 =	52 / width of table in bytes	NAXIS1 =		133 .	/ width of table in bytes
NAXIS2 =	85995 / number of rows in table	NAXIS2 =		85995 .	/ number of rows in table
PCOUNT =	97967480 / size of special data area	PCOUNT =		304599288	/ size of special data area
GCOUNT =	1 / one data group (required keyword	f GCOUNT =		1 .	/ one data group (required keyword)
TFIELDS =	12 / number of fields in each row	TFIELDS =		18 .	/ number of fields in each row
TTYPE1 = 'PAKTNUMB'	/ label for field 1	TTYPE1 =	'ENERGY	н -	/ label for field 1
TFORM1 = '1J '	/ data format of field: 4-byte INT	TFORM1 =	'1D	1	/ data format of field: 8-byte DOUBLE
TUNTT1 = '	/ physical unit of field	TUNIT1 =	'keV	ч.	/ physical unit of field
TTYPE2 = 'TRG ID '	/ label for field 2	TTYPE2 =	'ABS X	н -	/ label for field 2
TFORM2 = '1J	/ data format of field: 4-byte INT	TFORM2 =	'1D —	1	/ data format of field: 8-byte DOUBLE
TUNIT2 = '	/ physical unit of field	TUNIT2 =	' mm	1	/ physical unit of field
TTYPE3 = 'SEC '	/ label for field 3	TTYPE3 =	'ABS Y	1	/label for field 3
TFORM3 = '1K	/ data format of field: 8-byte INT	TFORM3 =	'1D —	1	/ data format of field: 8-byte DOUBLE
TUNIT3 = '	/ physical unit of field	TUNIT3 =	' mm	ч.	/ physical unit of field
TTYPE4 = 'MICROSEC'	/ label for field 4	TTYPE4 =	'ABS Z	ч.	/label for field 4
TFORM4 = '1J	/ data format of field: 4-byte INT	TFORM4 =	'1D —	ч.	/ data format of field: 8-byte DOUBLE
TUNTT4 = '	/ physical unit of field	TUNIT4 =	' mm	ч.	/ physical unit of field
TTYPE5 = 'TIME '	/ label for field 5	TTYPE5 =	'ABS ELE	н -	/label for field 5
TFORM5 = '1D '	/ data format of field: 8-byte DOU	лTFORM5 =	'1A —	1	/ data format of field: ASCII Character
TUNITS = '	/ physical unit of field	TTYPE6 =	'PE ENE	1	/ label for field 6
TTYPE6 = 'MIN COL '	/ label for field 6	TFORM6 =	'1D	ч.	/ data format of field: 8-byte DOUBLE
TTORM6 = '11 '	/ data format of field: 2-byte INT	TUNIT6 =	'keV	1	/ physical unit of field
TUNIT6 = ' '	/ physical unit of field	TTYPE7 =	'PE PHI	1	/ label for field 7
TTYPE7 = 'MAX COL '	/ label for field 7	TFORM7 =	'1D	н -	/ data format of field: 8-byte DOUBLE
TFORM7 = '11	/ data format of field: 2-byte INT	TUNIT7 =	'rad	н -	/ physical unit of field
TUNIT7 = '	/ physical unit of field	TTYPE8 =	'PE THET	н -	/label for field 8
TTYPE8 = 'MIN ROW '	/ label for field 8	TFORM8 =	'1D	ч.	/ data format of field: 8-byte DOUBLE
TFORM8 = '11 '	/ data format of field: 2-byte INT	TUNIT8 =	'rad	· .	/ physical unit of field
TUNIT8 = '	/ physical unit of field	TTYPE9 =	'AUG_ENE	1	/label for field 9
TTYPE9 = 'MAX ROW '	/ label for field 9	TFORM9 =	'1D —	· .	/ data format of field: 8-byte DOUBLE
TFORM9 = '11 '	/ data format of field: 2-byte INT	TUNIT9 =	'ke∀	· .	/ physical unit of field
TUNIT9 = '	/ physical unit of field	TTYPE10 =	'AUG_PHI	· .	/ label for field 10
TTYPE10 = 'ROI SIZE'	/ label for field 10	TFORM10 =	'1D	· · · · · · · · · · · · · · · · · · ·	/ data format of field: 8-byte DOUBLE
TFORM10 = '1J '	/ data format of field: 4-byte INT	TUNIT10 =	'rad	· · · · · · · · · · · · · · · · · · ·	/ physical unit of field
TUNIT10 = '	/ physical unit of field	TTYPE11 =	'AUG_THET		/ label for field 11
TTYPE11 = 'ERR SUM '	/ label for field 11	TFORM11 =	'1D	· · · · · · · · · · · · · · · · · · ·	/ data format of field: 8-byte DOUBLE
TFORM11 = '1J '	/ data format of field: 4-byte INT	TUNIT11 =	'rad	· · · · · · · · · · · · · · · · · · ·	/ physical unit of field
TUNIT11 = '	/ physical unit of field	TTYPE12 =	'TRK_LEN	· · · · · · · · · · · · · · · · · · ·	/ label for field 12
TTYPE12 = 'PIX PHAS'	/ label for field 12	TFORM12 =	'1D	· ·	/ data format of field: 8-byte DOUBLE
$TFORM12 = 'PI(\overline{3}256)'$	/ data format of field: variable 1	LITUNIT12 =	' mm	· ·	/ physical unit of field
TUNIT12 = '	<pre>/ physical unit of field</pre>	TTYPE13 =	RANGE	· · · · · ·	/ label for field 13
EXTNAME = 'EVENTS '	/ name of this binary table extens	BITFORM13 =	'1D	· · · · · ·	/ data format of field: 8-byte DOUBLE
END		TUNIT13 =	່ກາກ		/ physical unit of field
		TTYPE14 =	'NUM_PAIR	. ·	/ label for field 14
		TFORM14 =	'1J		/ data format of field: 4-byte INTEGER
Imagina	TTYPE15 =	'ION_POSX		/ Label for field 15	
imaging	y rolailliteli y	TFORM15 =	'PD(180)		/ data format of field: variable length array
		TUNIT15 =	່ກກ		/ physical unit of field

										NS.III	
XTENSION= BITPIX = NAXIS =	'BINTABLE	8, 2,	/ binary / 8-bit 1 / 2-dime	table ex bytes nsional b	tension						e of TECHT
NAXIS1 =	:	52)	/ width	of table	in bytes	NAXIS1	=	133 / 1	width of table	in bytes	
NAXIS2 =	:	85995 ,	/ number	of rows	in table	NAXIS2	=	85995 / r	number of rows	in table	
PCOUNT =	:	97967480 ,	/ size o	f special	. data area	PCOUNT	=	304599288 / :	size of specia	l data area	•
GCOUNT =	:	1,	/ one da	ta group	(required key	word GCOUNT	=	1/0	one data group	(required key	/word)
TFIELDS =	:	12 ,	/ number	of field	ls in each row	TFIELDS	=	18 / 1	number of fiel	ds in each rov	7
TTYPE1 =	'PAKTNUMB	ر '	/ label	for field	l 1	TTYPE1	= 'ENERGY '	· / ·	Label for fiel	d 1	
TFORM1 =	: '1J	ر ب	/ data f	ormat of	field: 4-byte	INT TFORMI	= 'IU '	/ (lata format of	field: 8-byte	e DOORLE
TUNIT1 =	: '	ر ب	/ physic	al unit o	.f fiald 1		= 'KAV '	– 4	$\frac{1}{2}$	or field	
TTYPE2 =	'TRG_ID		/ label		••	– 2	_ J	4	0	0	DIE
TFORM2 =	: '1J		/ data f	Select							BLE
TUNIT2 =			/ physic	— All							
TTYPE3 =	SEC		/ Label	– Au							DIF
TFORM3 =	: 'IK		/ data r	Invert							DLE
TUNIT3 =	INTODOGEO		/ pnysic								
TTTPE4 =	· MICRUSEC		/ label / J-+- f	1	2	4	5	1	4	8	BLF
TTURM4 =	: 'IJ		/ data r / shread		4		2				
TONII4 =	. UTT ME		/ pnysic / labal	<u> </u>	4	5	3	Z	5	3	
TTEOPME -	. 11ML	ر ا	/ lawer / data f	3	2	5	3	1	0	4	acter
TTOMTS =			/ uata I / physic	4	1	1	2	г	0	0	
TTVDR6 -	'MIN COL '		/ pnysic / label	4	1	1	3	5	Z	2	BLE
TFORM6 =	1T		/ data f	5	0	3	2	0	5	1	
TUNIT6 =	. '		/ physic	6	с С	0	1	0	0	0	
TTYPE7 =	MAX COL		/ label		3	4	1	0	4	0	BLE
TFORM7 =	· '1I		/ data f	7	7	6	2	3	2	4	
TUNIT7 =		· .	/ physic	8	3	9	0	2	3	6	
TTYPE8 =	MIN ROW	·	/ label		J		3		J		BLE
TFORM8 =	· '1I -	ر I	/ data f	9	1	2	4	1	4	1	
TUNIT8 =	: '	· ،	/ physic	10	1	3	1	1	1	1	1
TTYPE9 =	'MAX_ROW	ر ا	/ label		-		-	-	-	-	BLE
TFORM9 =	: '1I	ر '	/ data f	11	6	2	0	1	1	1	
TUNIT9 =	: '	ر '	/ physic	12	5	5	2	7	1	2	
TTYPE10 =	'ROI_SIZE		/ label			-			-		BLE
TFORM10 =	: '1J		/ data f	13	3	U	4	3	2	2	
TUNITIU =			/ physic	14	8	11	2	5	4	4	
TTYPE11 =	ERR_SUM		/ Label	45			-	-		-	
TFORMII =	: 1J		/ data r / chronie	15	1	3	5	2	2	U	
TUNITII =	IDTV DUAC		/ pnysic	16	3	3	3	3	1	5	BLF
TTTPE12 =	PIA PHAS	۱	/ label / Jata f	17				-	-		
TT ORM 12 =	PI(3236)		/ uata r / physic	17	T	3	4	8	1	4	
FYTMAME -	FUENCE		/ physic / pawe e	18	2	3	2	1	1	5	BLE
FND	EVENIS	L	, name u	10	-		4		4	4	
LIND				19	3	2	4	2	1	4	
				20	1	8	5	2	0	1	EGER
						TITELS	TON PUSA	1.	LADEL LOL LIET	.u 15	4
	Imadir	na Polarima				ma oraci E	100/100 1	1	J E E		1 - 1

imaging Polarimetry

TFORM15 = PD(180)TUNIT15 = 'mm

/ data format of field: variable length array / physical unit of field

SACHUSE

Imaging Polarimetry

CHASC 2/6/18

19

Calibration Data

• Known:

- polarization angle
- energy
- source position
- source is 100% polarized
- Detector data are 'flight-like'
- Data are used to verify instrument model's $\mu(E)$

Track Measurement via Machine Learning HLM, Adam Trebach (MIT) and Michelle Ntampaka (CfA)

- Method 1 ('Tracking'): Learn track <u>directions</u>
 - Only trains with simulated data, needs physics of interaction
 - Event track is ~500 (x,y,PH) 3-tuples
 - Simulations have known photoelectron direction
 - Learns using ~10,000 events, apply to test sample of 1000 events
- Method 2 ('Holistic'): Learn polarization of event list
 - Trains on either simulated or calibration data
 - Training set is ~10,000 x 500 = 5 x 10⁶ 3-tuples
 - Polarization direction is known for training, applied to test data
 - Much faster than method 1

Model Fitting

- Traditional Method:
 - Bin I on (t, E, α , δ) into light curves, spectra, or images
 - Fit binned (or perhaps unbinned event list) using response functions
 - Handling complexity: time-dependent spectra, spatially varying spectra, etc: slice data in time or energy to make different spectra or images
- Problem: now add Q, U (or Π , ϕ)
 - Assume Π , ϕ are independent of E or t -> use traditional methods
 - Slice by E, α , δ (or t, α , δ) to get Π (E), $\phi(\alpha, \delta)$, etc.
- Alternative: Use priors based on Chandra (if unvarying) or joint observations
 - Requires Bayesian, multi-parameter modeling
 - Several scenarios are common

Constrain polarization properties of an imaged, bright AGN x-ray jet

- Centaurus A (Cen A = NGC 5128) central region
 - 1.5-Ms IXPE (simulated) observation of Cen A

Region	MDP ₉₉			
Core	0.4%			
Jet	10.9%			
Knot A+B	17.6%			
Knot C	16.5%			
Knot F	23.5%			
Knot G	30.9%			
ULX	14.8%			

Model Testing

- Infeasible (?) using full track information
 - Tracks are not deterministically predictable
 - Derive distributions of general properties of tracks?
- Simplistic, easy: bin data, use χ^2
- Feasible, easy: unbinned K-S on φ, t, or E
- Challenging: Bayesian posterior
- Challenge: Simulation-based nearest neighbor test?