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Outline
• Introduction to Polarimetry


• IXPE: the Imaging X-ray Polarization Explorer


• Computational Challenges


• Basic measurements


• Event track measurement — Machine Learning?


• Modeling in 7 dimensions (E, t, a, d, I, Q, U) — nonparametric Bayesian 
priors?


• Testing models on event lists — nearest neighbor testing, Approximate 
Bayesian Computation?
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Polarimetry Probes of Physics
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Basics of Polarized Light
• All light waves are polarized


• Stokes parameters are handy:

• I = total intensity


• Q, U are orthogonal linearly polarized parts


• V is circular (+ or -) polarized intensity


• Common alternative: P, f


• P = (Q2 + U2)1/2 / I


• f = tan-1(Q/U)


• A beam is “unpolarized” if the photon set is randomly polarized (P = V 
= 0)


• MDP = ‘Minimum Detectable Polarization’ (99% conf.):


• All photons also have energy (E), time (t), sky position (a,d)
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Modulation of Polarized Signals
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Modulation Factor = µ = (Cmax-Cmin)/(Cmax+Cmin)

http://www.isdc.unige.ch/polar/modfactor

http://www.isdc.unige.ch/polar/modfactor
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AGN Jet Polarimetry (M 87)
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Marshall et al. 2002

Perlman+ ‘12
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AGN Jet Polarimetry (M 87)
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Testing Quantum Electrodynamics with Magnetars

• Magnetars: slowly rotating neutron stars with B > 1014 G


• Magnetized vacuum is birefringent


• Flux is unaffected but polarization fraction and angle change 
with spin phase
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A Science Goal: Neutron Star Atmospheres

• P and f depend on B-field 
direction and N-star 
orientation (pulse phase)


• Atmospheres show features 
now found in spectra of 
isolated N-stars


• Polarization data would 
distinguish features in spectra


• Atmosphere models are used 
to determine R2, g to give M,R
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Imaging X-ray Polarization Explorer (IXPE)
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Forward	
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IXPE Gas Pixel Detector
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Event Results
• Event time (to 10 µs), image, pulses measured


• Empirical method finds event origin, direction
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Polarization from modulation histogram  
and calibrated modulation factor
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Actual	data	for	a	
polarized	source	

40.7%±0.3%	modulation

Actual	data	for	an	
unpolarized	source	

0.6%±0.4%	modulation

	

MDP.99 = 



Imaging Polarimetry CHASC 2/6/18

The Standard Statistics
• Data: X = {xi, yi, dPHi, ti, aT(ti), dT(ti)}, i = 1…N tracks


• Process X to Y = {ai, di, PHi, ti, fi)


• Use known distribution functions:


• RMF: R(PH | E) ~ G[ gE, s(E) ]


• PSF: F(a, d, | a0, d0)


• Polarization: l(E, f) = A(E) [ I + µ(E) Q cos f + µ(E) U sin f ]


• Generally, I = f(E, t, a0, d0), Q = g(E, t, a0, d0), U = h(E, t, a0, d0)


• Data are poisson: Y ~ P( R*F*l )
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Standard Analysis
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With uncertainties, but qµ << 1, uµ << 1
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Standard Analysis, Unbinned
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The Track Problem
• Track measurement is 

empirical

• Tracks have randomness


• Bulk of PH is at 
(uninteresting) end of track


• Low E tracks are short


• Some events are not 
considered


• Tracks are only 
probabilistically related 
to X-ray polarization


• Tracks are measured 
independently
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Track Algorithm Optimization

• MDP ~ 1/( µ e1/2 )


• Algorithm has parameters that trade off µ and e for best µ e1/2 
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Simulated Data
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Simulated Data
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Simulated Data
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Simulated Data
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Calibration Data

• Known:

• polarization angle


• energy


• source position


• source is 100% polarized


• Detector data are ‘flight-like’


• Data are used to verify instrument model’s µ(E)
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Track Measurement via Machine Learning

• Method 1 (‘Tracking’): Learn track directions

• Only trains with simulated data, needs physics of interaction


• Event track is ~500 (x,y,PH) 3-tuples


• Simulations have known photoelectron direction


• Learns using ~10,000 events, apply to test sample of 1000 events


• Method 2 (‘Holistic’): Learn polarization of event list

• Trains on either simulated or calibration data


• Training set is ~10,000  x 500 = 5 x 106 3-tuples


• Polarization direction is known for training, applied to test data


• Much faster than method 1
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Model Fitting
• Traditional Method:


• Bin I on (t, E, a, d) into light curves, spectra, or images


• Fit binned (or perhaps unbinned event list) using response functions


• Handling complexity: time-dependent spectra, spatially varying spectra, 
etc: slice data in time or energy to make different spectra or images


• Problem: now add Q, U (or P, f)


• Assume P, f are independent of E or t —> use traditional methods


• Slice by E, a, d (or t, a, d) to get P(E), f(a, d), etc.


• Alternative: Use priors based on Chandra (if unvarying) or 
joint observations

• Requires Bayesian, multi-parameter modeling


• Several scenarios are common
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Constrain polarization properties of  
an imaged, bright AGN x-ray jet

• Centaurus A (Cen A = NGC 5128) central region

• 1.5-Ms	IXPE	(simulated)	observaYon	of	Cen	A
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Region MDP99

Core 0.4%

Jet 10.9%

Knot	A+B 17.6%

Knot	C 16.5%

Knot	F 23.5%

Knot	G 30.9%

ULX 14.8%



Imaging Polarimetry CHASC 2/6/18

Model Testing

• Infeasible (?) using full track information

• Tracks are not deterministically predictable


• Derive distributions of general properties of tracks?


• Simplistic, easy: bin data, use c2


• Feasible, easy: unbinned K-S on f, t, or E


• Challenging: Bayesian posterior


• Challenge: Simulation-based nearest neighbor test?
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