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in Fig. 2v) like those of classes ρ and ν, and the flare as a
curved trail of soft (low HR2) points (Fig. 2u).

• class β This class shows complex behavior in the light curves,
some of which can be seen within other classes. What iden-
tifies class β however, is the presence in the CD of a char-
acteristic straight elongated branch stretching diagonally.

The number of the classes presented above could be reduced,
given the strong similarities between them, but our goal is not
to have as few classes as possible, but to give as comprehensive
a description of the source behavior as possible, in order to look
for basic ‘states’ of the source. For this purpose, defining a rela-
tively large number of classes means we are being conservative
in order not to overlook important details in source behavior.
All observation intervals in the sample considered for this work
are covered by this classification, but it is quite possible that
future observations would require yet other classes. Some of
our observation intervals can be seen as boundary cases be-
tween two classes. Therefore, our classification is not intended
to exhaustively list mutually exclusive modes of behavior for

GRS 1915+105 as: (i) transitions between some classes exist,
(ii) a smaller number of classes would probably be sufficient to
describe our observations, and (iii) more classes probably exist.
The point of our work will instead be to demonstrate that this
very complex behavior in fact follows a few very simple “uni-
versal laws”. Summarizing, in Fig. 3 we show a histogram with
the “occupation times” of the different classes in our sample.
Noice that class χ is by far the most common.

3.2. Classes λ, κ and θ: the basic states

Twoobservations representing classesλ andκ, I-38-00 (Interval
#3) andK-33-00 (Interval #2) respectively (notice the shortened
naming convention, explained in the caption to Table 1), have
already been presented by Belloni et al. (1997a,b). For a better
understanding of what follows, we will briefly summarize their
main result, restated using the terminology that we will use
throughout the rest of thiswork.Let us startwith examining class
λ. The total light curve, the CD and the HID are shown in Fig. 4.
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Fig. 1.—Light curves. Top: Front segments, 25–100 keV band. Middle:
Rear segments, 25–100 keV band. Bottom: Front segments, 100–200 keV band.
The plots show the main peak and decaying tail with the 7.6 s double-peaked
pulse profile. The spike in the front segments at 270 s is due to the removal
of an attenuator. Zero time corresponds to 21:30 UTC on 2004 December 27.

Fig. 2.—Average power spectra from 2.27 s intervals (0.3 cycles) centered
on different rotational phases, computed using photons from the front segments
with recorded energies in the range 25–100 keV. The top curve was computed
using 15 successive 2.27 s intervals, ≈150–260 s after the main flare, at a
rotational phase that includes the secondary peak and part of the DC phase.
The frequency resolution is 1 Hz. The middle curve shows the same spectrum
with 2 Hz frequency resolution. The QPO at 92.5 Hz is clearly visible. The
bottom curve is for the same time period but is an average of rotational phases
!2.27 s away from the 92.5 Hz signal phase: no QPOs are detected. Char-
acteristic error bars are shown for each spectrum.

Fig. 1). Although the flare was not directly in the RHESSI field
of view, most photons in the front segments would have been
direct. Given RHESSI’s native time resolution of 1 binary ms
(2!20 s), these events are clearly suitable for high-frequency
timing analysis. The rear segment flux, by contrast, comprises
scattered photons from the front segments, direct photons en-
tering through the walls of the spacecraft, and albedo flux. The
latter, which could be as much as 40%–50% of the direct flux
in the energy range of interest (McConnell et al. 2004), has a
severe impact on timing analysis. At the time of the flare,
RHESSI was passing the limbs of the Earth (as viewed from
the SGR). Albedo flux is limb-brightened, particularly if the
incoming flux is polarized (Willis et al. 2005). This means that
a large fraction of the detected photons could have incurred
additional delays of up to ≈0.02 s, smearing out signals above
≈50 Hz. Note that although count rates in the rear segments
exceed those recorded by RXTE, count rates in the front seg-
ments are slightly lower. It should also be noted that scattering
from the spacecraft walls and the Earth will cause the photon
energies recorded by RHESSI, particularly in the rear segments,
to deviate from the true energies of the incident photons. Quan-
tifying this effect precisely is extremely difficult. For this reason
we use broad energy bands in our analysis and urge some care
in interpreting the recorded photon energies.
We started by extracting event lists from the RHESSI data,

excluding only events occurring in a 2 s period ≈270 s after
the peak of the flare when an attenuator is removed (the as-
sociated spike introduces spurious variability, particularly in
the front segments). Timing analysis was carried out using the
statistic (Buccheri et al. 1983; Strohmayer & Markwardt2Zn

1999). Israel et al. (2005) showed that the presence of the high-
frequency signals was dependent on the phase of the 7.6 s
rotational pulse; the signals appeared most strongly at phases
away from the main peak. Similar phase-dependence was also
observed in the SGR 1900"14 hyperflare (Strohmayer &Watts
2005). As such, we have conducted a phase-dependent analysis.
We searched for phase-dependent QPOs by folding data of a

given rotational phase from Np pulses, generating power spectra
that are averaged to a frequency resolution Dn. The distribution
of noise powers is a x2 distribution with 2N degrees of freedom,
where ; P is the rotational period and DF isN p N Dn/(PDF)p

the phase window under consideration ( ). We0 ! DF ≤ 1

searched over a range ofDF,Np, and energy bands for any signals
with significance 13 j.
We started by searching for signals in the range 50–1000 Hz,

using only data from the front segments. In this range the noise
profile is Poissonian. We find only two signals that meet our
search criterion.
The first, for photons with recorded energies in the range

25–100 keV, is the QPO at 92.5 Hz previously reported by
Israel et al. (2005), shown in Figure 2. This signal, which we
detect only at a rotational phase away from the main peak, is
strongest ≈150–260 s after the initial flare. As noted by Israel
et al. (2005), this occurs in conjunction with an increase in
unpulsed emission. At Hz the QPO is resolved; atDn p 1

Hz it is not. We estimate the significance of theDn p 2
Hz power using a x2 distribution with 68 degrees ofDn p 2

freedom, which is the distribution expected based on the num-
ber of independent frequency bins and pulses averaged. The
peak at 93 Hz has a single-trial probability of . Ap-!72# 10
plying a correction for the number of frequency bins, inde-
pendent time periods, and rotational phases searched, we arrive
at a significance of ≈ . That this is lower than the!31# 10
significance reported by Israel et al. (2005) is to be expected,
given that the RHESSI front segment count rate is lower than
that of RXTE. A search for the signal in the RHESSI rear
segments indicates that the signal has indeed been smeared out
due to albedo flux. Fitting the QPO with a Lorentzian profile,
we find a centroid frequency of Hz, with a coher-92.7! 0.1
ence value Q of 40. The integrated rms fractional amplitude is

, in good agreement with Israel et al. (2005).10%! 0.3%
The independent detection with RHESSI of the 92.5 Hz QPO

is a strong confirmation of the RXTE findings. Using the sig-
nificance quoted by Israel et al. (2005), we can compute the
probability of getting two apparent detections at the same fre-
quency, time, and phase due to noise alone, given the number
of trials. If we do this, we find that the detection of the 92.5 Hz
QPO has a combined significance of 16 j, an extremely robust
result.
The second detection, for photons with recorded energies in

2 S. Vaughan et al.

Over the years there have been many reports of periodic or
quasi-periodic variations from AGN, spanning the range of AGN
types, from radio to gamma-rays, and on timescales from minutes
to years. However, this field has a chequered history. Many reports
of periodic variations are based on very few observed cycles of the
claimed period, and a failure to properly account for the random
(red noise) variations which can produce intervals of seemingly pe-
riodic behaviour. See Press (1978) for a general discussion of this
point, and Vaughan & Uttley (2006) for some specific examples
of periodicity claims drawn just from X-ray observations of nearby
AGN1. Further observations of the same targets usually fail to show
the strictly repeating, coherent oscillations expected from a truly
periodic process. As we enter the era of massive time-domain sur-
veys capable of studying 105 � 107 targets, it is becoming more im-
portant to carefully assess detection procedures in order to under-
stand and control the number of false detections. In this paper we
re-examine the case of PG 1302�102, and we consider the broader
problem of how di↵erent stochastic models can make it di�cult to
distinguish periodic modulation among light curves selected from
large time-domain surveys.

2 THE LIGHT CURVE OF PG 1302�102

Figure 1 (top panel) shows the eight years of CRTS photometric
data for PG 1302�102 fitted with a sinusoidal model. The data
comprise 290 V-band magnitude estimates with a mean of ⇡ 15.0
mag. The data were taken with two very similar telescopes (CSS
and MLS; these provided 234 and 56 photometric points, respec-
tively). The sampling pattern is irregular, comprising nine ‘seasons’
each spanning 4�5 months with gaps of 6�8 months. Within each
season there are ⇠ 7 nights of data, each containing four closely
spaced (�t ⇠ few minutes) photometric measurements. The error
bars provided by the CRTS pipeline processing are in this case
overestimated by a factor of ⇡ 4 � 5. This e↵ect can be seen by
examining the short timescale variations in the data: the rms varia-
tion of the magnitude estimates within groups of nearby data (each
group spanning < 20 days, where intrinsic variability is expected
to be weak, and only including groups with > 5 points) is a factor
⇡ 4 smaller than the error bars2.

The data clearly show significant variations, with an rms ⇠ 0.1
mag. We fitted the data (using weighted least squares) with a model
comprising a sinusoid plus a constant o↵set:

V(t) = A1 cos(2⇡ f0t) + A2 sin(2⇡ f0t) +C. (1)

(This is equivalent to a model A sin(2⇡ f0t + �) + C with amplitude
given by A

2 = A
2
1 + A

2
2 and phase tan � = A1/A2.) The best-fitting

amplitude is (A2
1 + A

2
2)1/2 = 0.125 mag and the best-fitting (ob-

server frame) period is t0 = 1/ f0 = 4.65± 0.06 yr, slightly di↵erent
from the 5.16 ± 0.24 yr found by G15a. For fitting their sinusoidal
model G15a included additional archival data – notably LINEAR
data (Sesar et al. 2011) – extending the observational baseline. The
overall fit statistic is �2 = 85.7 for 287 degrees of freedom, again
indicating that the error bars are too large. Comparing this model
to a constant gives ��2 = 741.1.

1 Arguably the best candidate for quasi-periodic AGN light curve was seen
in RE J1034 � 396 (Gierlinski et al. 2008), which showed ⇠ 16 ‘cycles’ in
a single, continuous X-ray observation.
2 We have examined CRTS data for other AGN of similar magnitude and
find that the photometric error bars are often considerably larger than the
short-term scatter in the data.
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Figure 1. Panel (a) shows the ⇡ 8 years of V-band Catalina Real-time Tran-
sient Survey (CRTS) data for PG 1302�102. Panels (b) and (c) show exam-
ple simulations of red noise with the same sampling pattern as the CRTS
data (black points) plus additional data to simulate three seasons of LIN-
EAR data (blue points). Panels (b) and (c) were generated by random pro-
cesses with no periodicity present (a bending power law power spectrum,
and a damped random walk, respectively). In each case, the continuous,
error-free simulation is shown as a pink curve and the sampled data are
shown as circles. The red curve shows the best-fitting sinusoid. Examples
(b) and (c) were randomly selected from the 100 best candidates in runs of
100, 000 simulations of each process.

3 BAYESIAN MODEL COMPARISON

It is also possible to fit the data using a stochastic model. However,
is not meaningful to simply compare the �2 values for these fits.
When fitting stochastic models to individual time series, the �2 fit
statistic loses its simple meaning as a diagnostic of the ‘goodness of
fit’. (This is because the variance of the process is itself a parameter
to be fitted; the standard �2 statistic only makes sense as a likeli-
hood proxy when the variance is fixed. In fact, �2 ! 0 is possible
for any su�ciently flexible stochastic process. See also Kozłowski
2016).

In order to compare a periodic model to a stochastic model, we
have performed a Bayesian model comparison between the sinu-
soidal model and a simple stochastic process, the damped random
walk model. We first computed the posterior densities for the pa-
rameters of each model using Markov Chain Monte Carlo (MCMC)
method. We used a method based on the ensemble sampler pro-
posed by Goodman & Weare (2010) with > 105 draws based on

MNRAS 000, 1–8 (2016)

Belloni et al (2000)

Strohmayer & Watts (2005)Vaughan et al (2016)

asteroids stars

black holes

neutron starsAGN
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in Fig. 2v) like those of classes ρ and ν, and the flare as a
curved trail of soft (low HR2) points (Fig. 2u).

• class β This class shows complex behavior in the light curves,
some of which can be seen within other classes. What iden-
tifies class β however, is the presence in the CD of a char-
acteristic straight elongated branch stretching diagonally.

The number of the classes presented above could be reduced,
given the strong similarities between them, but our goal is not
to have as few classes as possible, but to give as comprehensive
a description of the source behavior as possible, in order to look
for basic ‘states’ of the source. For this purpose, defining a rela-
tively large number of classes means we are being conservative
in order not to overlook important details in source behavior.
All observation intervals in the sample considered for this work
are covered by this classification, but it is quite possible that
future observations would require yet other classes. Some of
our observation intervals can be seen as boundary cases be-
tween two classes. Therefore, our classification is not intended
to exhaustively list mutually exclusive modes of behavior for

GRS 1915+105 as: (i) transitions between some classes exist,
(ii) a smaller number of classes would probably be sufficient to
describe our observations, and (iii) more classes probably exist.
The point of our work will instead be to demonstrate that this
very complex behavior in fact follows a few very simple “uni-
versal laws”. Summarizing, in Fig. 3 we show a histogram with
the “occupation times” of the different classes in our sample.
Noice that class χ is by far the most common.

3.2. Classes λ, κ and θ: the basic states

Twoobservations representing classesλ andκ, I-38-00 (Interval
#3) andK-33-00 (Interval #2) respectively (notice the shortened
naming convention, explained in the caption to Table 1), have
already been presented by Belloni et al. (1997a,b). For a better
understanding of what follows, we will briefly summarize their
main result, restated using the terminology that we will use
throughout the rest of thiswork.Let us startwith examining class
λ. The total light curve, the CD and the HID are shown in Fig. 4.
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Fig. 1.—Light curves. Top: Front segments, 25–100 keV band. Middle:
Rear segments, 25–100 keV band. Bottom: Front segments, 100–200 keV band.
The plots show the main peak and decaying tail with the 7.6 s double-peaked
pulse profile. The spike in the front segments at 270 s is due to the removal
of an attenuator. Zero time corresponds to 21:30 UTC on 2004 December 27.

Fig. 2.—Average power spectra from 2.27 s intervals (0.3 cycles) centered
on different rotational phases, computed using photons from the front segments
with recorded energies in the range 25–100 keV. The top curve was computed
using 15 successive 2.27 s intervals, ≈150–260 s after the main flare, at a
rotational phase that includes the secondary peak and part of the DC phase.
The frequency resolution is 1 Hz. The middle curve shows the same spectrum
with 2 Hz frequency resolution. The QPO at 92.5 Hz is clearly visible. The
bottom curve is for the same time period but is an average of rotational phases
!2.27 s away from the 92.5 Hz signal phase: no QPOs are detected. Char-
acteristic error bars are shown for each spectrum.

Fig. 1). Although the flare was not directly in the RHESSI field
of view, most photons in the front segments would have been
direct. Given RHESSI’s native time resolution of 1 binary ms
(2!20 s), these events are clearly suitable for high-frequency
timing analysis. The rear segment flux, by contrast, comprises
scattered photons from the front segments, direct photons en-
tering through the walls of the spacecraft, and albedo flux. The
latter, which could be as much as 40%–50% of the direct flux
in the energy range of interest (McConnell et al. 2004), has a
severe impact on timing analysis. At the time of the flare,
RHESSI was passing the limbs of the Earth (as viewed from
the SGR). Albedo flux is limb-brightened, particularly if the
incoming flux is polarized (Willis et al. 2005). This means that
a large fraction of the detected photons could have incurred
additional delays of up to ≈0.02 s, smearing out signals above
≈50 Hz. Note that although count rates in the rear segments
exceed those recorded by RXTE, count rates in the front seg-
ments are slightly lower. It should also be noted that scattering
from the spacecraft walls and the Earth will cause the photon
energies recorded by RHESSI, particularly in the rear segments,
to deviate from the true energies of the incident photons. Quan-
tifying this effect precisely is extremely difficult. For this reason
we use broad energy bands in our analysis and urge some care
in interpreting the recorded photon energies.
We started by extracting event lists from the RHESSI data,

excluding only events occurring in a 2 s period ≈270 s after
the peak of the flare when an attenuator is removed (the as-
sociated spike introduces spurious variability, particularly in
the front segments). Timing analysis was carried out using the
statistic (Buccheri et al. 1983; Strohmayer & Markwardt2Zn

1999). Israel et al. (2005) showed that the presence of the high-
frequency signals was dependent on the phase of the 7.6 s
rotational pulse; the signals appeared most strongly at phases
away from the main peak. Similar phase-dependence was also
observed in the SGR 1900"14 hyperflare (Strohmayer &Watts
2005). As such, we have conducted a phase-dependent analysis.
We searched for phase-dependent QPOs by folding data of a

given rotational phase from Np pulses, generating power spectra
that are averaged to a frequency resolution Dn. The distribution
of noise powers is a x2 distribution with 2N degrees of freedom,
where ; P is the rotational period and DF isN p N Dn/(PDF)p

the phase window under consideration ( ). We0 ! DF ≤ 1

searched over a range ofDF,Np, and energy bands for any signals
with significance 13 j.
We started by searching for signals in the range 50–1000 Hz,

using only data from the front segments. In this range the noise
profile is Poissonian. We find only two signals that meet our
search criterion.
The first, for photons with recorded energies in the range

25–100 keV, is the QPO at 92.5 Hz previously reported by
Israel et al. (2005), shown in Figure 2. This signal, which we
detect only at a rotational phase away from the main peak, is
strongest ≈150–260 s after the initial flare. As noted by Israel
et al. (2005), this occurs in conjunction with an increase in
unpulsed emission. At Hz the QPO is resolved; atDn p 1

Hz it is not. We estimate the significance of theDn p 2
Hz power using a x2 distribution with 68 degrees ofDn p 2

freedom, which is the distribution expected based on the num-
ber of independent frequency bins and pulses averaged. The
peak at 93 Hz has a single-trial probability of . Ap-!72# 10
plying a correction for the number of frequency bins, inde-
pendent time periods, and rotational phases searched, we arrive
at a significance of ≈ . That this is lower than the!31# 10
significance reported by Israel et al. (2005) is to be expected,
given that the RHESSI front segment count rate is lower than
that of RXTE. A search for the signal in the RHESSI rear
segments indicates that the signal has indeed been smeared out
due to albedo flux. Fitting the QPO with a Lorentzian profile,
we find a centroid frequency of Hz, with a coher-92.7! 0.1
ence value Q of 40. The integrated rms fractional amplitude is

, in good agreement with Israel et al. (2005).10%! 0.3%
The independent detection with RHESSI of the 92.5 Hz QPO

is a strong confirmation of the RXTE findings. Using the sig-
nificance quoted by Israel et al. (2005), we can compute the
probability of getting two apparent detections at the same fre-
quency, time, and phase due to noise alone, given the number
of trials. If we do this, we find that the detection of the 92.5 Hz
QPO has a combined significance of 16 j, an extremely robust
result.
The second detection, for photons with recorded energies in

2 S. Vaughan et al.

Over the years there have been many reports of periodic or
quasi-periodic variations from AGN, spanning the range of AGN
types, from radio to gamma-rays, and on timescales from minutes
to years. However, this field has a chequered history. Many reports
of periodic variations are based on very few observed cycles of the
claimed period, and a failure to properly account for the random
(red noise) variations which can produce intervals of seemingly pe-
riodic behaviour. See Press (1978) for a general discussion of this
point, and Vaughan & Uttley (2006) for some specific examples
of periodicity claims drawn just from X-ray observations of nearby
AGN1. Further observations of the same targets usually fail to show
the strictly repeating, coherent oscillations expected from a truly
periodic process. As we enter the era of massive time-domain sur-
veys capable of studying 105 � 107 targets, it is becoming more im-
portant to carefully assess detection procedures in order to under-
stand and control the number of false detections. In this paper we
re-examine the case of PG 1302�102, and we consider the broader
problem of how di↵erent stochastic models can make it di�cult to
distinguish periodic modulation among light curves selected from
large time-domain surveys.

2 THE LIGHT CURVE OF PG 1302�102

Figure 1 (top panel) shows the eight years of CRTS photometric
data for PG 1302�102 fitted with a sinusoidal model. The data
comprise 290 V-band magnitude estimates with a mean of ⇡ 15.0
mag. The data were taken with two very similar telescopes (CSS
and MLS; these provided 234 and 56 photometric points, respec-
tively). The sampling pattern is irregular, comprising nine ‘seasons’
each spanning 4�5 months with gaps of 6�8 months. Within each
season there are ⇠ 7 nights of data, each containing four closely
spaced (�t ⇠ few minutes) photometric measurements. The error
bars provided by the CRTS pipeline processing are in this case
overestimated by a factor of ⇡ 4 � 5. This e↵ect can be seen by
examining the short timescale variations in the data: the rms varia-
tion of the magnitude estimates within groups of nearby data (each
group spanning < 20 days, where intrinsic variability is expected
to be weak, and only including groups with > 5 points) is a factor
⇡ 4 smaller than the error bars2.

The data clearly show significant variations, with an rms ⇠ 0.1
mag. We fitted the data (using weighted least squares) with a model
comprising a sinusoid plus a constant o↵set:

V(t) = A1 cos(2⇡ f0t) + A2 sin(2⇡ f0t) +C. (1)

(This is equivalent to a model A sin(2⇡ f0t + �) + C with amplitude
given by A

2 = A
2
1 + A

2
2 and phase tan � = A1/A2.) The best-fitting

amplitude is (A2
1 + A

2
2)1/2 = 0.125 mag and the best-fitting (ob-

server frame) period is t0 = 1/ f0 = 4.65± 0.06 yr, slightly di↵erent
from the 5.16 ± 0.24 yr found by G15a. For fitting their sinusoidal
model G15a included additional archival data – notably LINEAR
data (Sesar et al. 2011) – extending the observational baseline. The
overall fit statistic is �2 = 85.7 for 287 degrees of freedom, again
indicating that the error bars are too large. Comparing this model
to a constant gives ��2 = 741.1.

1 Arguably the best candidate for quasi-periodic AGN light curve was seen
in RE J1034 � 396 (Gierlinski et al. 2008), which showed ⇠ 16 ‘cycles’ in
a single, continuous X-ray observation.
2 We have examined CRTS data for other AGN of similar magnitude and
find that the photometric error bars are often considerably larger than the
short-term scatter in the data.
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Figure 1. Panel (a) shows the ⇡ 8 years of V-band Catalina Real-time Tran-
sient Survey (CRTS) data for PG 1302�102. Panels (b) and (c) show exam-
ple simulations of red noise with the same sampling pattern as the CRTS
data (black points) plus additional data to simulate three seasons of LIN-
EAR data (blue points). Panels (b) and (c) were generated by random pro-
cesses with no periodicity present (a bending power law power spectrum,
and a damped random walk, respectively). In each case, the continuous,
error-free simulation is shown as a pink curve and the sampled data are
shown as circles. The red curve shows the best-fitting sinusoid. Examples
(b) and (c) were randomly selected from the 100 best candidates in runs of
100, 000 simulations of each process.

3 BAYESIAN MODEL COMPARISON

It is also possible to fit the data using a stochastic model. However,
is not meaningful to simply compare the �2 values for these fits.
When fitting stochastic models to individual time series, the �2 fit
statistic loses its simple meaning as a diagnostic of the ‘goodness of
fit’. (This is because the variance of the process is itself a parameter
to be fitted; the standard �2 statistic only makes sense as a likeli-
hood proxy when the variance is fixed. In fact, �2 ! 0 is possible
for any su�ciently flexible stochastic process. See also Kozłowski
2016).

In order to compare a periodic model to a stochastic model, we
have performed a Bayesian model comparison between the sinu-
soidal model and a simple stochastic process, the damped random
walk model. We first computed the posterior densities for the pa-
rameters of each model using Markov Chain Monte Carlo (MCMC)
method. We used a method based on the ensemble sampler pro-
posed by Goodman & Weare (2010) with > 105 draws based on

MNRAS 000, 1–8 (2016)

Belloni et al (2000)

Strohmayer & Watts (2005)Vaughan et al (2016)
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*for evenly sampled time series

assume many data points

~ Gaussian

𝛘2 with 2 degrees of freedom
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quasi-periodic oscillations



Credit: Sera Markoff

Heil et al 2014

4 L. M. Heil, P. Uttley and M. Klein-Wolt

a) b)

c)

Figure 2. a: Graphic illustrating where various states appear within the power-colour diagram. The area of overlap between the hardest and softest states is
also indicated. b: Power colour-colour plot for all observations of the transient objects within the sample with labels indicating 20-degree azimuthal or ‘hue’
regions from which the power spectra given in c were found. The plot is colour-coded for each 20◦ bin with the same colours used in c. c: Example power
spectra for each of the 20 degree ranges of hue around the power colour-colour diagram. Colours and indices refer to the 20◦ angular bins used in b. Further
examples are given in the Appendix.

allowing easy state classification for new sources with only a lim-
ited number of observations required.

Figure 1 shows the power colour values for two particular fre-
quency ratios, Power colour ratio 1 (PC1) is defined as variance
in 0.25-2.0 Hz / 0.0039-0.031 Hz and ratio 2 (PC2) is variance

in 0.031-0.25 Hz / 2.0-16.0 Hz. These particular ratios not only
compare all four broad frequency bands used in the initial analy-
sis, making the most of the available data, but are also separated
in frequency. This plot is colour coded according to object, and
the similarity in power-spectral evolution throughout outbursts be-

c⃝ 2002 RAS, MNRAS 000, 1–10
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So, we’re done, right?
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After detection of a photon, the detector is 
“dead” for a short interval
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dead time



Dead time affects mean and variance of 
the periodogram

Bachetti et al (2015)

The Astrophysical Journal, 800:109 (12pp), 2015 February 20 Bachetti et al.

(a)

(b)

(c)

(d)

Figure 1. Left: the cospectrum and the PDS are compared in the case of pure Poisson noise, without (a) and with (b) dead time. The simulated incident count rate was
225 cts s−1. The cospectrum mean is always zero. In these plots, it has been increased by two for display purposes. The frequency 1/τd is indicated. Right: the usual
relation between the PDS and its standard deviation (σ = P/

√
M , where M is the number of averaged PDSs) holds with and without dead time (c). Also, the variance

of the cospectrum is half the variance of the PDS, in both cases (d).

(see, e.g., van der Klis 1989 and references therein), where
τd is the dead time produced by each event, assuming that it
is constant. However, dead time also alters the sensitivity to
variable signals, acting as a frequency filter. PDS, in particular,
are deformed to a “wavy” shape that depends on the magnitude
of dead time and on count rates (see Figure 1). Power at
frequencies slightly above 1/τd is quenched, as there is a lack of
events whose separation is less than τd , while there is a relatively
higher rate above τd , and therefore the power at frequencies just
below 1/τd is slightly amplified. These “waves” have nodes at
1/τd and multiples thereof, where the power (in Leahy et al. 1983
normalization) is equal to 2, the value that it would have without
dead time, and maxima and minima in between are given by the
relative contribution of the quenching and amplification. For
frequencies ν ≪ 1/τd , the main effect is a general deficiency
of events, and the power has a decreasing level that approaches
≈ 2(1− rinτd )2 (Weisskopf 1985). Assuming that τd is the same
for each event and that only source events contribute to either
non-paralyzable or paralyzable dead time, this distortion can be
modeled precisely (see Vikhlinin et al. 1994 ; Zhang et al. 1995
for an exhaustive treatment). Also, some statistical properties
of the PDS hold in dead-time-affected data. For example, the
standard deviation associated with the bin i of the PDS is always
equal to Pi/

√
M , where Pi is the power in the bin i and M is the

number of averaged PDSs (see Figure 1).
In NuSTAR , τd is not strictly fixed at the same value for all

events, but varies by a few percent depending on the number of
pixels that are triggered. For this reason, the models available
in literature do not correctly describe the dead time effects for
this satellite: the “wavy” behavior of the PDS shifts slightly,
and to fully account for this effect and produce a white-noise
subtracted PDS, a very precise modeling of the dead time would
be required. Since at high count rates the “waves” can be very
prominent, any real variability feature such a QPO can easily be
“hidden” and difficult to detect.

As an additional complication, the models described above
assume that dead time is produced completely by the recorded
signal. In NuSTAR, additional dead time comes from events
outside the source extraction region, from vetoed events, and
from all events discarded for other reasons during the cleaning
process in the pipeline (the step from unfiltered to cleaned event
files). In the following, we neglect the effect of vetoed events,

since their dead time (∼20 µs) has a characteristic frequency of
1/τd ∼ 50 kHz, much higher than science events, and their total
contribution to dead time is small. We instead present a method
that permits construction of a proxy of a white-noise-subtracted
PDS, regardless of the count rate and the ratio between source
and background (or spurious) events.

3. THE COSPECTRUM AS AN IMPROVED
POWER SPECTRUM

NuSTAR has two completely independent focal plane modules
(each containing four detectors) that are read out by separate
microprocessors. It is therefore possible in principle to obtain
the same information given by a PDS through the CPDS (for
more details see Bendat & Piersol 2011): instead of considering
the PDSs in the two individual focal planes,

Pi(ν) = F∗
i (ν)Fi(ν) (i = A,B), (2)

where Fi indicates the Fourier transform of the light curve
detected by the focal plane i and ν is the frequency. One
multiplies the complex conjugate of one Fourier transform with
the other Fourier transform:

C(ν) = F∗
A(ν)FB(ν). (3)

The CPDS is often used in other contexts to obtain information
on the correlation between the signal in two energy bands. It is
a complex quantity: its real part is also called the cospectrum
and gives a measure of the signal that is in phase between
the two channels; its imaginary part, or quadrature spectrum,
gives instead a measure of the off-phase signal. Therefore, in
principle, it should be possible to eliminate all variability that is
not related between the two light curves, including the effects of
dead time, by only considering the cospectrum (the real part of
the CPDS). In Figure 1, we show the statistical properties of the
cospectrum in the case of pure Poisson noise. In both the dead-
time-affected and in the zero-dead-time cases the cospectrum
mean value is zero (in Figure 1, it has been shifted to two for
graphical reasons). This is a big advantage, as this is independent
of whether the dead time is constant or not (since the distribution
of dead time is also independent between the two detectors), and
therefore it is not necessary to conduct complicated studies of the

3
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Having Two Detectors Helps!



Signal is the same, but the 
measurement noise is different!
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What is the statistical 
distribution of the cospectrum?
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“The sum of two random 
variables is equivalent to the 
multiplication of its moment-

generating functions.

—  no astronomer, ever
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moment-generating function:

multiply MGFs of two variables: 

This is a Laplace 
distribution!

for the cospectrum:

Seijas-Macías & Oliveira (2012)



… why are we doing this again?





𝛘2 distribution
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Laplace 
distribution

𝛘2 distribution

significance threshold matters!



what about averaged cospectra?





Gaussian approximation 
works for large N 
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… not quite!



1) Equations so far only work for 
white noise 

2) The cospectrum only fixes the 
mean in the dead time case, not 
the variance!
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What about stochastic 
variability?

correlation coefficient 
between Fourier amplitudes

r = 0 for white noise 
r = 1 for power spectra
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which depends on power spectral shape!

😱😱 also, there is no existing closed-form 
solution for the PDF



Can we model the Fourier 
amplitudes directly?
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Can we model the Fourier 
amplitudes directly?

depends on P(ν)



[work in progress!]
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But: we can correct the 
periodogram (and the 
cospectrum) in some 

cases!
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Fourier Amplitude Difference Correction

Bachetti & Huppenkothen (2018)

red noise, no dead time white noise, dead time

use to correct 
periodogram



Bachetti & Huppenkothen (2018)

Fourier Amplitude Difference Correction



Caveat: this overestimates 
the rms amplitude when 

both flux and rms are very 
large



Conclusions

- statistics with Fourier spectra is fun! 

- use the cospectrum to do timing of bright sources in 
the presence of dead time when more than one 
detector is available (Bachetti+, 2015 ) 

- the (averaged) cospectrum requires different 
statistical distributions for significance testing 
(Huppenkothen+Bachetti, arXiv:1709.09666)  

- there is currently no closed-form solution for red 
noise cospectra (future work) 

- but red noise periodograms can be corrected using 
the FAD technique  (Bachetti+Huppenkothen, arXiv:1709.09700)
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