Discovering Celestial Objects with Machine Learning

Pavlos Protopapas (CfA and Harvard SEAS)
The Time Series Group
time series center:
short overview what is it about and what we do.
science
what are the general questions
periodic variable stars:
classification using kernels
results
search engine:
morphological searches
quasars
discoveries of Quasars using light variability
event detection
outer solar system questions

time series everywhere

cadence design stock prices

pavlos heart rate while cycling

focus: astronomy (light curves = time series). We have other data too such as labor data, real estate data, heart monitor data, archeological data, brain activity etc.

MACHO
TAOS
ESSENCE
Minor Planet Center
Pan-STARRS
OGLE
MMT
some HAT-NET
SDSS 82
EROS $\quad \sim 100$ million objects. 1000 flux observations per object in 2 bands (wavelengths

DASCH
disk:
computing nodes:
db server:
exotic:
~ 100 TB of disk LUSTER, NFS
Odyssey cluster at Harvard (~ 8000 cores).
dual core with 16 GB of memory and 2 TB of disk.
few servers for development
GPGPU dedicate machine Nvidia GTX285
GPU cluster with 16 machines with Nvidia Tesla T10 GPU's attached to each node
4 dedicated machines with Tesla T10

research opportunities

astronomy:
eclipsing binaries
extra-solar planets
supernovae
asteroids
TNO via occultation
AGNs
variable stars
microlensing
and many many more
computer science and statistics:
outlier/anomaly detection
clustering, classification
motif detection
scalability, the feature space
representation of the time series
distance metric
event detection at low SNR
computational challenges
size
interplay/accessibility
distributed computing and disbursement of data:
standards (VO),
subscription query

Charles Alcock (Astro-F)
Roni Khardon (CS-F)
Carla Brodley (CS-F)
P. Estevez (EE, Uchile, F)

丸Doug Alan (SoftEng)
Rahul Dave (SoftEng/Astro)
\star Sio Ao (EE-PostDoc)
Dae-Won Kim (Astro-GS)
\star Federica Bianco (Astro-GS)
\star Gabriel Wachman (CS-GS)
Alex Blocker (Stat-GS)
Zhan Li (Stat-GS)
Pablo Huijse (Uchile-GS)

Umaa Rebbapragada (CS-GS)
Andrew Wang (Astro)
Dan Preston (CS-MSc)
Patrick Ohiomoba (Math-Msc)
Matthias Lee (CS-Un)
Devin Pleuer (CS-Un)
Tom Buckley (CS-Un)

David Smalling (GS-Economics)
Jean-Baptiste Margue (AIP-France)
Rosaline Reid

variable stars

Right Now:

- Periodic stars only
- Cepheids, RRL's, EB's

Input: data (time series and other features) from survey
Output: list of periodic variable stars (Cepheids, RRLs, Eclipsing Binaries)

Lets do something real.

- Start with MACHO, EROS, MMT variable survey

Later:
QSOs
Working on:
Early prediction

typical light curves

Other features: brightness, color, period

typical light curves

we have millions of light curves

triangular inequality

 tree structuresEuclidean distance between light curves Q and C z-normalized

Kernel for Time Series

$$
\max _{s}\left\langle x, y_{+s}\right\rangle
$$

Pros:

Does exactly what we want Can compute using FFT in O(nlogn)

Cons:

Is not positive semidefinite

Kernel for Time Series

Theorem 1: S1 satisfies the Cauchy Schwartz inequality.
Theorem 2: Can construct a distance measure using S1 that satisfies triangle inequality.

Theorem 3: Any 3×3 Gram matrix of S 1 is positive semidefinite.
Theorem 4: S1 is NOT positive semidefinite.

Kernel for Time Series

K1:

$$
\sum_{s=1}^{n} e^{\lambda\left\langle x, y_{+s}\right\rangle}
$$

Pros:

Positive semidefinite
Intuitively approximates maximum alignment
Works as well
O(nlogn)

Classification Stage Overview

SVM
Kernel K1:
Similarity measure of "shape"
Kernel K2:
magnitude (brightness), color, period
Final kernel: K1 + K2

Approach Overview

Train on OGLE
Multi-stage processing of MACHO
Eliminate non-variables
Eliminate non-periodic variables
Eliminate non-Cepheid,RRL,EB periodic variables
Test on MACHO
Rank classifications by confidence
Set aside low-confidence predictions

Support Vector Machine (SVM)

- Supervised machine learning algorithm for classification (Meyer et al. 2003, Nerocomputing)
- Training model
- using known types of samples
- Predicting candidates
- using constructed model
- Example usages in astronomy
- Classification of galaxy types using SED (Tsalmantza et al. 2009, A\&A)
- Estimating photometric redshift (Wadadekar 2005, PASP)

Support Vector Machine

Training Set: OGLE

14087 periodic variables of type Cepheid, EB, RRL Periods given

Training Set: OGLE

- 14087 periodic variables of type Cepheid, EB, RRL
- Periods given
- 99.8% accuracy on cross-validation ... so we're done, right?
- We know we can classify well given a group of Cepheids, EBs, and RRLs and their periods.

Current Results

- Cross-validation over OGLEII:

CEPH	3413	0	13
EB	0	3388	0
RRL	12	2	7259

Test Set: MACHO

- ~ 25 million stars (LMC and SMC)
- $\sim 50,000$ are periodic variables
- Two primary issues:

Finding those $\sim 50,000$ periodic variables or eliminating just the other 24,950,000 stars
Finding the periods

Eliminate Non-Periodic Variables

- For each time series (9 million of them):

Find the period
Fold time series to the period

- Finding the period is hard

Period Estimation

- Use Lomb-Scargle Periodogram to generate period candidates
- If period candidate $\sim 1 d$, check for aliasing
- Check for asymmetry
- Find all candidate periods and put them back into the model

But Is It Periodic?

- Period finder works on any (non-)periodic data
- Check the shape
- Need to formalize notion of "shape"
- Variance ratio
- Move a sliding window along the folded time series
- Compare local variances to global variances
- For this application, this is a reliable estimate of "having shape"
- Roll this back into the model

Eliminate Non-Cepheid, RRL, EBs

- Model learned from OGLE cannot make useful predictions on other kinds of data
- It is critical to remove as many data points as possible that are not in one of the three classes

Eliminate Non-Cepheids, RRLs,EBs

	Cepheid	EB	RRL	Unknown
Cepheid	247	8	2	8136
EB	0	1107	1	10586
RRL	0	4	1637	16075
Rejected	9	167	4	32335
Abstained	0	0	0	0
	Cepheid	EB	RRL	Unknown
	247	5	2	7313
Cepheid	0	1103	0	9869
EB	0	3	1637	15733
RRL	9	167	4	32335
Rejected	0	8	1	1882
Abstained	0			

	Cepheid	EB	RRL	Unknowı
Cepheid	247	8	2	7974
EB	0	1106	1	10455
RRL	0	4	1637	15990
Rejected	9	167	4	32335
Abstained	0	1	0	378
	Cepheid	EB	RRL	Unknowı
Cepheid	246	1	1	6512
EB	0	1097	0	9134
RRL	0	3	1637	15391
Rejected	9	167	4	32335
Abstained	1	18	2	3760

Table 4: Confusion Matrices for classification on MACHO using abstention thresholds of 1 (none), 0.99, (0.9 going left to right, up to down.

Shift-invariant Grouped Multi-task Learning for Gaussian Processes

Work with R. Khardon and Y. Wang

Future Work

- Period finding [Y. Wang and P. Huise]
- Using
- Estimation of non-Cepheid,RRL, EB classes or subclasses
- Ranking of predictions according to confidence [come with a correct probabilistic model]

Automatic Classification of Quasars using lightcurves

MACHO Database

Dae-Won Kim,
Yong-lk Byun, Charles Alcock, Roni Khardon

QSO

- Reference objects for galactic dynamics studies with stellar proper motion (Kallivayalil et al. 2006, ApJ; Piatek et al. 2008, AJ)
- Inter- and intra-galatic medium studies using absorption lines (Smoker et al. 2005, A\&A; Misawa et al. 2009, ApJ)
- QSO variability research
- Ensemble variability study (Vanden Berk et al. 2004, ApJ)
- But, due to the small number of well-sampled QSO times series, variability for individual QSOs are poorly known
- Only ~70 well-sampled QSOs from MACHO and

Quasars

Quasar is a shortening of "quasi-stellar radio source", and they've also been called quasi-stellar objects or QSOs
quasar is a compact region in the centre of a massive galaxy surrounding the central supermassive black hole.

The quasar is powered by an accretion disc around the black hole.
Quasars show a very high redshift, which is an effect of the expansion of the universe between the quasar and the Earth.

Quasars are a subset of Active Galactic Nuclei.

QSO Variability

- Due to the in-falling material into black hole at the center of Active Galactic Nuclei (AGN)

MACHO QSOs

- Only 60 known QSOs in total
- 48 of them detected by time series analysis in LMC and SMC (Geha et al. 2003, ApJ)
- 51 QSOs from 30 LMC fields; 15 degree2 (~3 QSOs/degree2)
- There should be a lot more QSOs not yet discovered
- MACHO LMC has total of 80 fields; 40 square degrees
- ~13 QSOs/degree2 (SDSS Data Release 5; Schneider et al. 2007, AJ)

MACHO QSOs

- Previous time series work shows very low efficiency
- Geha et al. 2003 selected total ~2,500 QSOs candidates
- Manually removed 2,140 false positives and observed only 260 targets spectroscopically
- 47 of them were confirmed as QSOs; ~2\%
- What is the nature of false positives?
- Majority of them considered to be Be stars
- B-type stars showing emission line originated from circumstellar disk and variability as well. Typically close to main sequence (Porter 2003, PASP)
- long-period variables and even RR Lyraes

Example Light-Curves of MACHO QSOs and Be Stars

X/LJ/IUAUqust LUIU. Astrostat. P.

Be stars

Time Series Features

- How to separate variables from non-variables?
- How to separate QSOs from other variables?
- n time series features
- Extracted from each MACHO time series
- 1 color index; MACHO B-R

Time Series Features

- Stetson L (Stetson 1996, PASP) vs. color index (MACHO B-R)

$$
J=\frac{\sum_{k=1}^{n} w_{k} \operatorname{sgn}\left(P_{k}\right) \sqrt{\left|P_{k}\right|}}{\sum_{k=1}^{n} w_{k}} \quad P_{k}=\left\{\begin{array}{ll}
\delta_{i(k)} \delta_{j(k)}, & \text { if } i(k) \neq j(k) \\
\delta_{i(k)}^{2}-1, & \text { if } i(k)=j(k)
\end{array} \quad \delta=\sqrt{\frac{n}{n-1}} \frac{v-\bar{v}}{\sigma_{v}}\right.
$$

Time Series Features

- Autocorrelation function $R(\tau)=\frac{\mathrm{E}\left[\left(X_{t}-\mu\right)\left(X_{t+\tau}-\mu\right)\right]}{\sigma^{2}}$
- Number of data points above (below) the empirical line of:

Example of Autocorrelation Function

Cepheids

Eclipsing Binaries

Time Series Features

- Sigma (Shin 2008, MNRAS)
- Eta (von Neumann 1941)
- Con (Wozniak 2000, AcA)
- Lomb-Scargle period (Scargle 1982, ApJ)
- SNR of peak in periodogram (Hartman 2008, ApJ)
- Range of cumulative sum; $\operatorname{Max}(\mathrm{S})-\operatorname{Min}(\mathrm{S}) ; \mathrm{Si}=\mathrm{Si}-1+(x i-\operatorname{mean}(\mathrm{x}))$

Support Vector Machine (SVM)

- Supervised machine learning algorithm for classification (Meyer et al. 2003, Nerocomputing)
- Training model
- using known types of samples
- Predicting candidates
- using constructed model
- Example usages in astronomy
- Classification of galaxy types using SED (Tsalmantza et al. 2009, A\&A)
- Estimating photometric redshift (Wadadekar 2005, PASP)

Support Vector Machine

Support Vector Machine

- Known variables we are using to train model:
- 58 QSOs
- 128 Be stars
- 582 Microlensings
- 193 Eclipsing Binaries
- 288 RR Lyraes
- 73 Cepheids
- 365 Long period variables
- 4,288 Non-variable stars

Training QSOs SVM Model

- We're using 2-class SVM model
- QSOs vs. others (e.g., Be stars, Cepheids, RR Lyraes, etc)
- 10 time series features + 1 color index
- ~6,000 total light-curves to train model
- 10-fold cross-validation
- 10x10 grid search

Training QSOs SVM Model

- Recall : ~80\%
- Precision : ~75\% c.f. Geha's work ~2\%, OGLE ~5\% (6 out of 111 candidates) (Dobrzycki et al. 2005 A\&A)
- Almost all false positives are Be stars
- None of the periodic variables and microlensing are misclassified as QSOs
- One misclassified Be star, which is actually a QSO, is correctly diagnosed as a QSO by our SVM model
*For RR Lyraes, Eclipsing Binaries and Cepheids, recall is ~99\%.

QSO Candidates

- ~20million MACHO LMC stars
- We're using Odyssey Cluster at Harvard
- ~8000 CPUs (Intel Xeon 2.30GHz)
- 16,384 Gbytes memory
- 32,410 GFlops* (61th in the world; June 2008)
- We used 150 cores for the analysis
- It takes about 2 days to analysis the whole 20million time series
- Without the cluster, it would take more than several months

[^0]

QSO Candidates

- Total ~ 1200 QSO candiates
- 45 known QSOs are successfully recovered (total 51 previously known QSOs in LMC); 45/51 = ~88\% recall rate
- 10 known Blue Variables (among 1,300 known Blue Variables; Keller et al. 2002, AJ*) are selected as QSOs
- None of the other types of known variables (e.g. RR Lyraes) are selected as QSOs
*Spectroscopic results for randomly selected 100 samples shows $\sim 90 \%$ of them are Be stars.

QSO Candidates

- Example of QSO candidates (x-axis : MJD, y-axis : MACHO B magnitude)

QSO Candidates

1. Not uniformly distributed QSOs <- false positives
2. Intercept of red line <- number density of QSOs?
3. Different distribution of red (outer region of LMC) and yellow line (center region of LMC). <-Number of points in LC?

X-ray matching XMM and Chandra

- From the known MACHO QSOs 6 are in the existing footprints of Chandra.
- We found 4 x-ray counter-parts

From all the candidates 46 are in the Chandra footprint We found 18 to have x-ray counter-parts

Crossmatching with Kozlowski's QSOs Catalog

- Kozlowski 2009, ApJ: 4,699 LMC QSOs candidates using IR-color selection method
- Spitzer Deep Wide Field Survey (SDWFS)
- Spitzer Surveying the Agents of a Galaxy's Evolution (SAGE) survey
- They are obtaining spectra of 1,000 candidates

(5.8]-[8.0] (mag)

[3.6]-[8.0] (mag)

Crossmatching with Kozlowski's QSOs Catalog

- Total 436 crossmatched QSOs

(Kozlowski \& Kochanek 2009).

Spectroscopic validation

- Active learning approach.
- Time at 6dF
- Multi-fiber spectrograph using V, R grating
- Ask for 2 nights to observe 400 candidates. \{First run was unsuccessful due to bad weather\}.
- Magellan, July 2010, $1 / 2$ hour.
- Take spectra of 15 candidates in the SMC
- Analysis not complete yet. Indications of few QSOs
- Retrain the model and got for two more runs in winter.
(problem is TAC and cost)

Figure 3. Composite SDSS QSO spectra according to redshift. The blue lines are the spectra, and dashed lines are emission lines nractical for $O S O$ confirmation Colored regions indicate the wavelenoth coverage

Expected Outcome

- New QSO Detection Algorithm based on Optical Variability and Color
- Variability Characterization for Spectroscopically Confirmed QSOs
- Studies on crossmatched X-ray sources
- LMC Internal Dust Extinction from QSO distribution
- Subclasses based on the variability
- Active learning approach.
breath

Event detection

- Motivation: Solar system, occultation by outer solar system objects.
- Surveys: TAOS, Pan-STARRS, Whipple
- First approach: Rank statistics.
- Second approach: Alex Blocker's talk

Solar System

The Solar System comprises the Sun and the retinue of celestial objects gravitationally bound to it:

- the eight planets
- 162 known moons
- three currently identified dwarf planets and their known moons (Pluto, Ceres and Eris)
- thousands of small bodies. This last category includes asteroids,
 meteoroids, comets, and interplanetary dust.

Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune.

Use occultations of background stars:

A tantalizing example has been reported by Schlichting et al: the HST-FGS event:

Whipple

- Indirect exploration of the outer solar system
- The primary goals of the Whipple mission are to detect and characterize objects in all of the major solar system populations beyond Neptune:
- Kuiper Belt (and scattered disk ...)
- "Sedna region" (100-2,000 AU)
- Oort Cloud (3,000 AU - ?)
- Achieve these goals by monitoring $>10,000$ stars to look for occultations by small objects

The Whipple mission:

- Science team includes: Charles Alcock, Gerbs Bauer, Mike Brown, Matt Holman, Scott Kenyon, Hal Levison, Steve Murray, Pavlos Protopapas, Ruth Murray-Clay, Hilke Schlichting, Paul Weissman, \& Mike Werner
- SAO, JPL, and Ball Aerospace
- Whipple is a Discovery Class mission that will be proposed to NASA in response to the recent Discovery Announcement of Opportunity

Whipple: a Discovery Class mission to search for occultations

- Original concept inspired by Kepler
- Schmidt-Cassegrain telescope design
- 37 square degree field of view
- Earth leading orbit:
- opposite direction from Spitzer \& Kepler

Whipple will survey all of the small body populations in the solar system:

8/25/10August 2

8/25/10August 2

8/25/10August 2

Whipple: a proposed spacecraft to search for occultations

- Hybrid CMOS focal plane array
- $10,000(80,000)$ stars, $40(5) \mathrm{Hz}$ readout

Anticipated Event Rates:

- Oort Cloud:
- $\quad 10^{12}$ objects ($\mathrm{D}>3 \mathrm{~km}$) each in Inner and Outer Oort Clouds
- $\quad \mathrm{N}(>\mathrm{D}) \sim \mathrm{D}^{-1.8}$; randomized eccentricities
- $10-100$ events per year
- "Sedna" population:
- Take guidance from the Caltech survey (Meg Schwamb's talk)
- $100 \mathrm{AU}<\mathrm{a}<1000 \mathrm{AU}$; q > 30 AU
- 1-1000 per year. Very uncertain!
- Kuiper Belt:
- ~5,000 events per year (Schlichting et al 2009 event)

Comparison between TAOS, PanSTARRS, IMACS and Whipple:

	TAOS	Magellan/l MACS	Pan_STARRS (video guide stars)	Whipple
Duration	5 years	Few days per year	3 years	3 years
Number of targets followed	200	1000	70	$\sim 10,000$
Efficiency of 100% at 50 AU	3 KM	0.5 km	1 km	0.5 km
StarHours at SNR>25	5000	20000	$100000 / \mathrm{year}$	$10000 / \mathrm{hour}$
Events	$<1 /$ year	$1-20 /$ year	$2-40 / \mathrm{year}$	>4000 year
825/10Auenst 2010. Astrostat. .				

Scan statistics

```
Ideal: Given a time series find the region [sub sequence of measurements] that are not consistent with noise.
```

Original idea originates from epidemiology
time series: f_{i} the value at time t_{i}

$$
S(r, w)=\sum_{i=r}^{r+w} f_{i}
$$

Scan statistics

Second part is to find the p-value. Build the distribution $\mathrm{P}\left(\mathrm{S}(\mathrm{r}, \mathrm{w})>\mathrm{S}_{0}\right)$
We could simulate time series with the same noise characteristics and build distribution of $\mathrm{P}(\mathrm{S})$.

Problem:

1) too expensive for large datasets
2) Modeling the noise is not as simple (systematics, etc)

Solution 1:
Reshuffle the sequence (the noise model is taken care)

Reshuffling:
Basically get all $\mathrm{f}_{\mathrm{i} \text { 's }}$ and put the in a random order. Do this many times and each time calculate all $\mathrm{S}(\mathrm{r}, \mathrm{w})$. Create S_{0} thus $\mathrm{P}\left(\mathrm{S}(\mathrm{r}, \mathrm{w})>\mathrm{S}_{0}\right)$

No good. I need to this for each time series since the noise could be very different (data are taken different times, different filters etc)

Scan statistics

We need something that eliminates the need for modeling the noise.

Solution: Rank the y-values (flux)
Consider a Time Series T with n points. We then create a Time Series T_{R} by converting each point in T into a ranked value. Thus, the highest point in T_{R} will be n, the second highest $\mathrm{n}-1$, third highest $\mathrm{n}-2$, etc.

$$
Q(r, w)=\sum_{i=r}^{r+w} R_{i}
$$

where R's are the rank values and Q is the new statistics (equivalent to S)

Advantage: All time series of n points in rank space have exactly the same $P\left(Q_{0}\right)$. We need to calculate this only once. Then for real data we calculate $\mathrm{Q}(\mathrm{r}, \mathrm{w})$ and we know the p-value for each point.

To calculate this simply select w numbers out of 1 ..n and calculate Q . From that build the distribution $\mathrm{P}(\mathrm{Q})$

This distribution can be found analytically
It is the same problem as finding the number of partitions of S with w distinct parts, each part between 1 and n , inclusive. Consider the values
e1, e2 $, \ldots, \mathrm{e}_{\mathrm{w}}$.
If we can find all possible solutions to $0<\mathrm{e} 1<\mathrm{e} 2<\ldots<\mathrm{e}_{\mathrm{w}} \leq \mathrm{n}$, we can simply multiply by w! (all possible permutations) and obtain our result.

This will be the same as the following: Subtract 1 from the smallest part, 2 from the second, etc. to get

$$
0 \leq \mathrm{e} 1-1 \leq \mathrm{e} 2-2 \leq \ldots \leq \mathrm{e}_{\mathrm{w}}-\mathrm{w} \leq \mathrm{n}-\mathrm{w} .
$$

We have subtracted a total of
$1+2+\ldots+\mathrm{w}=\mathrm{w}(\mathrm{w}+1) / 2$, so we are now looking for the number of partitions of $-\mathrm{w}(\mathrm{w}+1) / 2$ with at most w parts, and with largest part at most $\mathrm{n}-\mathrm{w}$.

To find the number of partitions, we consider a specific application of q-binomial coefficients.

A similar problem is finding the number of distinct partitions of k elements which fit inside an m by n rectangle. This can be found by finding the coefficient
of qk in the q -binomial coefficient:
$q^{k}=\left[\begin{array}{c}m+n \\ m\end{array}\right]_{q}$

This is the same problem as the number of partitions with at most m parts and largest part at most n. Applying this to our problem, we find that we are looking for the coefficient of q_{k}

Then, to find the number of possible sums of Q , we find the coefficient of $\mathrm{m}-\mathrm{w}(\mathrm{w}+1) / 2$ in the previous equation and multiply by w!.

An iterative solution does exist. To do so, we create the following recurrence:

$$
P(w, n, Q)=\sum_{j=1}^{n} P(w-1, j-1, Q-j)
$$

Dynamic programming. Memory management.

tets 1: probability distribution build "red" by simulation and "green" with the analytical formula

Thank you

QSO

- Very energetic galaxy
- e.g. 3C 273 : about 2×1012 times that of our sun; about 100 times that of average giant galaxies
- Very distant galaxy
- $0.05<z<6.5$
- Gunn-Peterson Trough

Quasar

- Very ancient galaxy

Support Vector Machine

- e.g., 7-fold cross validation

Repeat 7 times

Appendix

Appendix

Appendix

Time Series Features

- Stetson L (Stetson 1996, PASP)

$$
J=\frac{\sum_{k=1}^{n} w_{k} \operatorname{sgn}\left(P_{k}\right) \sqrt{\left|P_{k}\right|}}{\sum_{k=1}^{n} w_{k}} \quad P_{k}=\left\{\begin{array}{ll}
\delta_{i(k)} \delta_{j(k)}, & \text { if } i(k) \neq j(k) \\
\delta_{i(k)}^{2}-1, & \text { if } i(k)=j(k)
\end{array} \quad \delta=\sqrt{\frac{n}{n-1}} \frac{v-\bar{v}}{\sigma_{v}}\right.
$$

+ Be

\times Cepheid

+ RR
Quasar
+ NoneVariable
\times EB
+ MicroLensing
\times LPV August 2010. A30blStatsiPoSt

Time Series Features

- Sigma (Shin 2008, MNRAS)

$$
\frac{\sigma}{\mu}=\frac{\sqrt{\sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2} /(N-1)}}{\sum_{n=1}^{N} x_{n} / N}
$$

+ Be

$\times \times$ Cepheid

+ RR
\times Quasar
+ NoneVariable
\times EB
+ MicroLensing
\times LPV August 2010. A30-bStatstiPoStat

Time Series Features

- Eta (von Neumann 1941)

$$
\eta=\frac{\delta^{2}}{\sigma^{2}}=\frac{\sum_{n=1}^{N-1}\left(x_{n+1}-x_{n}\right)^{2} /(N-1)}{\sigma^{2}}
$$

[^1]

104/54

Time Series Features

- Con (Wozniak 2000, AcA) : number of consecutive data points above (below) 3

[^2]

Time Series Features

- Range of cumulative sum

$$
\operatorname{Max}(S)-\operatorname{Min}(S) ; S i=S i-1+(x i-\operatorname{mean}(x))
$$

[^3]

Time Series Features

- Lomb-Scargle period (Scargle 1982, ApJ)
- SNR of peak in periodogram (Hartman 2008, ApJ)

$+\mathrm{Be}$

$\times \times$ Cepheid

+ RR
\times Quasar
+ NoneVariable
$\times \times$ EB
+ + MicroLensing
\times LPV August 2010. A30thStatssipo

Support Vector Machine

$$
\begin{aligned}
\min _{\mathbf{w}, b, \boldsymbol{\xi}} & \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i=1}^{l} \xi_{i} \\
\text { subject to } & y_{i}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)+b\right) \geq 1-\xi_{i} \\
& \xi_{i} \geq 0
\end{aligned}
$$

Support Vector Machine

Effect of Kernel
(Ben-Hur \& Weston, PyML HOWTO)
linear: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{i}^{T} \mathbf{x}_{j}$.
polynomial: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\gamma \mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}+r\right)^{d}, \gamma>0$.
radial basis function (RBF): $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\exp \left(-\gamma\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}\right), \gamma>0$.
sigmoid: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\tanh \left(\gamma \mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}+r\right)$.

Support Vector Machine

Effect of y parameter

Support Vector Machine

- How to decide the best C and y parameters?
- N-fold cross validation

1. All labeled samples are randomly partitioned into N subsamples.
2. Select ($\mathrm{N}-1$) subsamples and train SVM model using specific C and γ values.
3. Predict remained one subsamples and check if the predicted labels are same with original labels.
4. Repeat these processes N times.
5. Calculated recall rate $=$ \# of correctly predicted samples / \# of total samples = \# of true positives / (\# of true positives + \# of false negatives)

		Actual condition	
		Infected	Not infected
Test result August 2010	Test shows "infected"	True Positive	False Positive (i.e. infection reported but not present) Type I error
	est shows "not pinfected"	False Negative (i.e. infection not detected)	True Negative 111/54

Support Vector Machine

- How to decide the best C and γ parameters?
- Grid search (=Brute force search)
1.Set certain range for each parameter (i.e. Cmax, Cmin, ymax and ymin).
2.Divide the region into NxN grid.
3.For each grid, calculate recall rate.

4. Select C and γ which give the best recall rate.
5.Make finer NxN grid and repeat above processes until recall rate converges.

Predicting Quasar Candidates

- Two types of false positives
- can manually remove very easily but we want to automate whole prediction processes because we want apply our algorithm to another dataset in the future (e.g. MACHO SMC, MACHO Galactic bulge, or another survey data.)
- We're expecting to have 1,000~1,500 quasar candidates in the end.

AMEust 2010. AstroStat. P.

Crossmatching with Chandra Catalog

- Total ~1,100 X-ray sources around LMC.
- ~ 40 fields, total ~ 0.7 degree2
- We found 19 crossmatched ones.
- One is a previously known Seyfert 1 galaxy.

x-axis : MJD
y-axis : MACHO B magnitude

[^0]: *FLoating point Operation Per Seconds

[^1]: $+\mathrm{Be}$
 $\times \times$ Cepheid

 + RR
 \times Quasar
 + NoneVariable
 \times EB
 + MicroLensing
 \times LPV August 2010. A30-bSStatsiPoSt

[^2]: $+\mathrm{Be}$
 $\times \times$ Cepheid

 + RR
 \times Quasar
 + NoneVariable
 $\times \times$ EB
 + + MicroLensing
 \times LPV August 2010. A30hStatssifo

[^3]: $+\mathrm{Be}$
 $\times \times$ Cepheid

 + RR
 \times Quasar
 + NoneVariable
 $\times \times$ EB
 + + MicroLensing
 \times LPV August 2010. A30thStatstifo

