Probabilistic Cataloguing in Crowded Fields

Stephen K N Portillo with Benjamin C G Lee, Tansu Daylan and Douglas P Finkbeiner 19 September 2017 AstroStat Day

Ne: [if TAS

Cataloguing Crowded Stellar Fields

Portillo et al. 2017, AJ, 154, 4

Traditional Catalogue Issues

Probabilistic Cataloguing

- Infer an ensemble of catalogues
- Naturally handles deblending ambiguities and source-source covariance

Traditional Catalogue

Compared to Hubble

Probabilistic Catalogue

Completeness

False Discovery Rate

Stacked Catalogue Ensemble

Condensed Catalogue

Cataloguing Crowded Stellar Fields

Cataloguing Crowded Stellax Fields

Extending Probabilistic Cataloguing

- Probabilistic cataloguing is a flexible framework
- Can incorporate any class of sources that can be parameterized so that:
- The data can be forward modelled from a catalogue, in order to calculate the likelihood
- Priors can be placed on these parameters
- Galaxies are often fit with Sérsic profiles

$$
I\left(r ; I_{e}, n, r_{e}\right)=I_{e} \exp \left(-b_{n}\left[\left(\frac{r}{r_{e}}\right)^{1 / n}-1\right]\right)
$$

- These profiles are approximate - most useful for galaxies where detailed structure is not discernable

Galaxy Model Images

- Calculating model image is already the slowest part for stars - even more so for galaxies
- We developed a faster way to calculate model images of point sources
- So approximate galaxy profiles with a collection of point sources?

Deblending Stars + Galaxies

Deblending Stars + Galaxies

Conclusion

- The problem of crowded field photometry will be very relevant in the LSST era
- Probabilistic cataloguing is well-suited for crowded fields, capturing deblending ambiguities and sourcesource covariance
- We have demonstrated that probabilistic cataloguing outperforms traditional cataloguing in crowded stellar fields
- We have been able to speed up our probabilistic cataloguing implementation and are extending it to galaxies

Backup Slides

Use Case Specifications

- $40^{\prime \prime} \times 40^{\prime \prime}$ from Messier 2 ($N_{p i x}=10000$), 2 ' from centre
- Core radius 0.34 ', half-light radius 1.08 '
- DAOPhot catalogue identifies 337 DAOPhot sources
- HST catalogue identifies 1000 sources
- Run with about 250 CPU -hours (10^{9} model evaluations @ 1 CPU-ms each)

Completeness (Condensed Catalogue)

False Discovery Rate (Condensed Catalogue)

Residuals

Worst-Case Scenario

Worst-Case Residuals

Reversible Jump MCMC

- Allows proposals to change dimensionality of model
- Move m takes x and generates auxillary u to propose x^{\prime}
- Move m^{\prime} takes x^{\prime} and generates auxillary u^{\prime} to propose x
- $\operatorname{dim} x+\operatorname{dim} u=\operatorname{dim} x^{\prime}+\operatorname{dim} u^{\prime}$ and $(x, u) \leftrightarrow\left(x^{\prime}, u^{\prime}\right)$ one-to-one

$$
\alpha\left(x \rightarrow x^{\prime}\right)=\min \left(1, \frac{\pi\left(x^{\prime}\right)}{\pi(x)} \frac{\mathcal{L}\left(x^{\prime} \mid D\right)}{\mathcal{L}(x \mid D)} \frac{j_{m^{\prime}}\left(x^{\prime}\right)}{j_{m}(x)} \frac{g\left(u^{\prime}\right)}{g(u)}\left|\frac{\partial\left(x^{\prime}, u^{\prime}\right)}{\partial(x, u)}\right|\right)
$$

- For example, birth/death between $x=\left\{x_{1}, \ldots, x_{N}\right\}$ and $x^{\prime}=\left\{x_{1}, \ldots, x_{N+1}\right\}$ has $u=x_{N+1}$ and $u^{\prime}=\emptyset$
- If birth and death equally likely, sources independent in prior and new source x_{2} generated from prior

$$
\alpha\left(x \rightarrow x^{\prime}\right)=\min \left(1, \frac{\pi(N+1)}{\pi(N)} \frac{\mathcal{L}\left(x^{\prime} \mid D\right)}{\mathcal{L}(x \mid D)}\right)
$$

Catalogue Star Priors

- Prior that sources are independent:

$$
\pi\left(\left\{x_{i}, y_{i}, F_{i}\right\}_{i=1}^{N}\right)=\pi(N) \prod_{i=1}^{N} \pi\left(x_{i}, y_{i}\right) \pi\left(f_{i}\right)
$$

- Prior on location is flat
- Prior on flux is a power law of index 2 , above $f_{\text {min }}$
- Prior on number penalizes the $(N+1)^{\text {th }}$ star based on the expected improvement in χ^{2} under the null hypothesis that there are N stars:

$$
\log \frac{\pi(N+1)}{\pi(N)}=-\frac{3}{2}
$$

Catalogue Galaxy Priors

- Galaxies have more parameters: modelled as circular disks with scale radius r and 3D orientation (θ, φ)
- Galaxies are given Sérsic profiles with fixed index
- Similar priors as stars for location and flux
- Prior on scale radius is a power law with index 2 with a minimum of 1 pixel
- Prior on orientation is spherically symmetric
- Prior on number penalizes the $(N+1)^{\text {th }}$ galaxy based on the expected improvement in χ^{2} under the null hypothesis that there are N galaxies:

$$
\log \frac{\pi(N+1)}{\pi(N)}=-\frac{6}{2}
$$

Receiver Operating Curve

