Probabilistic Cataloguing in Crowded Fields

Stephen K N PORTILLO with Benjamin C G LEE, Tansu DAYLAN and Douglas P FINKBEINER 19 September 2017 AstroStat Day

Cataloguing Crowded Stellar Fields

Portillo et al. 2017, AJ, 154, 4

Traditional Catalogue Issues

Probabilistic Cataloguing

- Infer an *ensemble of catalogues*
- Naturally handles deblending ambiguities and source-source covariance

Traditional Catalogue

Compared to Hubble

Probabilistic Catalogue

Completeness

False Discovery Rate

Stacked Catalogue Ensemble

Condensed Catalogue

Cataloguing Crowded Stellar Fields

Cataloguing Crowded Stellar Fields

Extending Probabilistic Cataloguing

- Probabilistic cataloguing is a flexible framework
- Can incorporate any class of sources that can be parameterized so that:
 - The data can be forward modelled from a catalogue, in order to calculate the **likelihood**
 - **Priors** can be placed on these parameters
- Galaxies are often fit with Sérsic profiles

$$I(r; I_e, n, r_e) = I_e \exp\left(-b_n \left[\left(\frac{r}{r_e}\right)^{1/n} - 1\right]\right)$$

• These profiles are approximate – most useful for galaxies where detailed structure is not discernable

Galaxy Model Images

- Calculating model image is already the slowest part for stars – even more so for galaxies
- We developed a faster way to calculate model images of point sources
- So approximate galaxy profiles with a collection of point sources?

Deblending Stars + Galaxies

Deblending Stars + Galaxies

Conclusion

- The problem of crowded field photometry will be very relevant in the LSST era
- Probabilistic cataloguing is well-suited for crowded fields, capturing deblending ambiguities and source-source covariance
- We have demonstrated that probabilistic cataloguing outperforms traditional cataloguing in crowded stellar fields
- We have been able to speed up our probabilistic cataloguing implementation and are extending it to galaxies

Backup Slides

Use Case Specifications

- + 40" × 40" from Messier 2 ($N_{pix} = 10\ 000$), 2' from centre
- Core radius 0.34', half-light radius 1.08'
- DAOPhot catalogue identifies 337 DAOPhot sources
- HST catalogue identifies 1 000 sources
- Run with about 250 CPU-hours (10⁹ model evaluations @ 1 CPU-ms each)

Completeness (Condensed Catalogue)

False Discovery Rate (Condensed Catalogue)

Residuals

Worst-Case Scenario

Worst-Case Residuals

Reversible Jump MCMC

- Allows proposals to change dimensionality of model
 - Move *m* takes *x* and generates auxillary *u* to propose x'
 - Move m' takes x' and generates auxillary u' to propose x

• dim
$$x$$
 + dim u = dim x' + dim u' and $(x, u) \leftrightarrow (x', u')$ one-to-one
 $\alpha(x \to x') = \min\left(1, \frac{\pi(x')}{\pi(x)} \frac{\mathcal{L}(x'|D)}{\mathcal{L}(x|D)} \frac{j_{m'}(x')}{j_m(x)} \frac{g(u')}{g(u)} \left| \frac{\partial(x', u')}{\partial(x, u)} \right| \right)$

• For example, birth/death between $x = \{x_1, ..., x_N\}$ and $x' = \{x_1, ..., x_{N+1}\}$ has $u = x_{N+1}$ and $u' = \emptyset$

• If birth and death equally likely, sources independent in prior and new source x_2 generated from prior

$$\alpha(x \to x') = \min\left(1, \frac{\pi(N+1)}{\pi(N)} \frac{\mathcal{L}(x'|D)}{\mathcal{L}(x|D)}\right)$$

Catalogue Star Priors

- Prior that sources are independent: $\pi(\{x_i, y_i, F_i\}_{i=1}^N) = \pi(N) \prod_{i=1}^N \pi(x_i, y_i) \pi(f_i)$
- Prior on location is flat
- Prior on flux is a power law of index 2, above f_{min}
- Prior on number penalizes the (N + 1)th star based on the expected improvement in χ^2 under the null hypothesis that there are N stars:

$$\log \frac{\pi(N+1)}{\pi(N)} = -\frac{3}{2}$$

Catalogue Galaxy Priors

- Galaxies have more parameters: modelled as circular disks with scale radius r and 3D orientation (θ, φ)
- · Galaxies are given Sérsic profiles with fixed index
- Similar priors as stars for location and flux
- Prior on scale radius is a power law with index 2 with a minimum of 1 pixel
- Prior on orientation is spherically symmetric
- Prior on number penalizes the (N + 1)th galaxy based on the expected improvement in χ^2 under the null hypothesis that there are N galaxies:

$$\log \frac{\pi(N+1)}{\pi(N)} = -\frac{6}{2}$$

Receiver Operating Curve

