Last modified: February 26, 2007
This thread uses PINTofALE to generate simulated XMM EPIC-PN, EPIC-MOS, and RGS spectra of a coronal source normalized to a ROSAT/PSPC count rate. The XMM ARF, RMF and RSP files used here can be obtained from the PROPOSAL & PLANNING TOOLS page.
# start IDL idl ; set up the PoA environment ; .run initale ;NOTE: ; if INITALE fails, run the script ; @PoA_constructor
; Because some variables will be used repeatedly in the course of this ; thread, it might be useful to initialize them now. Nailing down these ; variables now will also allow for something of a checklist for some ; important quantities/files needed for the task at hand: ; Local Environment We will set up the pathnames specific to ; the local installation here !LDBDIR = '$CHIANTI' ; Atomic Line Database ; choose from the predefined '$CHIANTI', '$SPEX', '$APED', ; or specify the full path name to the line database pimmsdir='/soft/pimms/data' ; the full path name to the PIMMS database ; Source We will characterize our model source by the following: !NH = 3e20 ; H column density [cm^-2] !EDENS = 1.0e9 ; electron number density [cm^-3] !ABUND = getabund('grevesse et al.') ; element abundances ;(SEE: getabund()) T_components = [6.1, 6.8, 7.2] ; log(T[K]) components in EM EM_components = [6.1d11, 6.1d11, 7.1e11] ; Emission Measure [cm^-3] ; Observation The observation can be described by: EXPTIME = 50. ; nominal exposure time [ks] obs_rate = 0.1 ; ROSAT/PSPC count rate [ct/s] ; (set to 0 or less to be ignored) pn_ARF = 'pn-medium.arf' ; EPIC-PN ARF filename or 'none' mos_ARF = 'mos1-medium.arf' ; EPIC-MOS ARF filename or 'none' rgs1_ARF = 'none' ; RGS1 ARF filename or 'none' rgs2_ARF = 'none' ; RGS2 ARF filename or 'none' pn_RMF = 'pn.rmf' ; EPIC-PN RMF filename mos_RMF = 'mos1.rmf' ; EPIC-MOS RMF filename rgs1_RMF = 'RGS1ORDER1.RSP' ; RGS-1 RMF filename rgs2_RMF = 'RGS2ORDER1.RSP' ; RGS-2 RMF filename ;NOTE: the standard RGS response matrices include the ;effective area, and hence an ARF should not be specified for them. ; Analysis Parameters ; We may restrict the analysis to the wavelength ranges of interest. ; Here we set the ROSAT/PSPC passband used to measure obs_rate, ; the desired XMM output passband, and the wavelength grid ; for the idealized model spectrum. The output spectra will be ; defined on the default response energy grids restricted to ; the ranges defined here. emin_rosat = 0.12 ; minimum energy in ROSAT/PSPC passband [keV] emax_rosat = 2.48 ; maximum energy in ROSAT/PSPC passband [keV] emin_xmm = 0.2 ; minimum energy in XMM passband [keV] emax_xmm = 8.0 ; maximum energy in XMM passband [keV] wmin_rosat = !fundae.kevang/emax_rosat ; convert to [Ang] wmax_rosat = !fundae.kevang/emin_rosat ; convert to [Ang] wmin_xmm = !fundae.kevang/emax_xmm ; convert to [Ang] wmax_xmm = !fundae.kevang/emin_xmm ; convert to [Ang] !WMIN = wmin_rosat < wmin_xmm ; minimum wavelength for model [Ang] !WMAX = wmax_rosat > wmax_xmm ; maximum wavelength for model [Ang] nwbin = 10000L ; number of bins in model spectrum
; A Differential Emission Measure (DEM) is required to estimate the ; amount of emission at various temperatures. Typically, a 2-temperature ; model is used. Here we will use PINTofALE's mk_dem(), which constructs ; a DEM array given a temperature grid and emission measure components. ; We use as the temperature grid !LOGT. The emission measure components ; are T_components and EM_components as defined above. We choose 'delta' ; to treat the EM components as delta functions (see mk_dem() or the ; Chandra/ACIS example for more options) !DEM=mk_dem('delta', logT = !LOGT, pardem=T_components, indem=EM_components)
; We will assume that a ROSAT/PSPC count rate is available, ; and that the simulation will match this rate. We will assume ; a count rate of 0.1 cts/s . Data from other missions such ; as ASCA, BeppoSAX, etc. can be dealt with in the same manner. ; First find and read in the ROSAT/PSPC effective area. ; You will need to know where your local PIMMS installation ; is to do this. rosat_pspc_open=get_pimms_file('ROSAT','PSPC','OPEN',pdir=pimmsdir) rd_pimms_file, rosat_pspc_open, pspc_effar, pspc_wvlar, /wave ; Make sure that the wavelengths are sorted in increasing order ae=sort(pspc_wvlar) & pspc_wvlar=pspc_wvlar[ae] & pspc_effar=pspc_effar[ae] ; The following is similar to the process described in the detailed ; example thread (see Section 1 and Section 2)
A] Read in line cooling emissivities and calculate line intensities ; Read line cooling emissivities of all possible lines in the ; ROSAT/PSPC wavelength range from the atomic data base. ; NOTE: To avoid multiple reads of the line emissivity database, we ; shall read in the emissivities over the entire range of interest lconf=rd_line(atom,n_e=!EDENS,$ wrange=[MIN(pspc_wvlar)<!WMIN,MAX(pspc_wvlar)>!WMAX],$ dbdir=!LDBDIR,verbose=!VERBOSE,wvl=LWVL,logT=LLOGT,Z=Z,$ ion=ION,jon=JON,fstr=lstr) ; The output of rd_line() will only include level population, ; and not ion balances. We will use fold_ioneq() to fold ion balances. ; NOTE: This step should not be performed if !LDBDIR is set to APED, ; which already includes ion balances and abundances. if strpos(strlowcase(!LDBDIR),'aped',0) lt 0 then lconf=$ fold_ioneq(lconf,Z,JON,chidir=!CHIDIR,$ logT=LLOGT,eqfile=!IONEQF,verbose=!VERBOSE) ; And now calculate line intensities using lineflx(). v_ABUND = !ABUND ; NOTE: If !LDBDIR is set to APED, Anders & Grevesse abundances ; are already included in the emissivities. In such cases, either ; leave out the atomic numbers (Z) in the call to LINEFLX() below, ; or redfine the abundance array to be relative to the APED values, ; e.g., if strpos(strlowcase(!LDBDIR),'aped',0) ge 0 then $ v_ABUND = !ABUND/getabund('anders & grevesse') linint=lineflx(lconf,!LOGT,LWVL,Z,DEM=!DEM,abund=v_ABUND) ;[ph/s]
B] Read in continuum emissivities and calculate continuum intensities ; We can read in continuum emissivities using rd_cont(). ; It is important to note that the output emissivities of rd_cont() ; are in [1e-23 erg cm^3/s/Ang] and not [1e-23 erg cm^3/s] as with rd_line() ; NOTE: To avoid multiple reads of the continuum emissivity database, ; we shall read in the emissivities over the entire range of interest cconf=rd_cont(!CEROOT,n_e=!EDENS,$ wrange=[min(pspc_wvlar)<!WMIN,max(pspc_wvlar)>!WMAX],$ dbdir=!CDBDIR,abund=!ABUND,verbose=!VERBOSE,$ wvl=CWW,logT=ClogT) ; The continuum intensities per angstrom can be calculated again using ; lineflx(). Note that CWW contains the wavelength bin boundaries for ; the emissivity array. CWVL=0.5*(CWW[1:*]+CWW) conint=lineflx(cconf,!LOGT,CWVL,DEM=!DEM) ;[ph/s/Ang] ; Now to get just continuum intensity, we must multiply by an array ; containing the bin widths. If we define this array simply ; with: CDW=CWW[1:*]-CWW, we will get an ugly 'saw-toothed' figure. ; (a side-effect of the way the data-base is constructed) To work ; around this, we can use CWVL, the mid-bin values, and mid2bound(), ; which gives intelligent bin-boundary values given mid-bin values: CWB=mid2bound(CWVL) & CDW=CWB[1:*]-CWB conint=conint*CDW ;[ph/s/Ang]*[Ang]
C] Correct for inter-stellar absorption ; Derive ISM absorptions using ismtau() ltau=ismtau(LWVL,NH=!NH,fH2=!fH2,He1=!He1,HeII=!HeII,$ Fano=Fano,wam=wam,/bam,abund=!ABUND,verbose=!VERBOSE) ctau=ismtau(CWVL,NH=!NH,fH2=!fH2,He1=!He1,HeII=!HeII,$ Fano=Fano,wam=wam,/bam,abund=!ABUND,verbose=!VERBOSE) ltrans=exp(-ltau) & ctrans=exp(-ctau) ; Derive theoretical line fluxes linflx = linint * ltrans ;[ph/s/cm^2] ; Derive theoretical continuum fluxes conflx = conint * ctrans ;[ph/s/cm^2]
D] Bin spectra and fold in effective area ; make input theoretical spectrum grid nwbin_pspc = n_elements(pspc_effar) dwvl=float((max(pspc_wvlar)-min(pspc_wvlar))/nwbin_pspc) wgrid=findgen(nwbin+1L)*dwvl+min(pspc_wvlar) ; Rebin to form theoretical line spectrum using hastrogram() linspc = hastogram(abs(LWVL),wgrid,wts=linflx) ;[ph/s/cm^2/bin] ; Rebin to form theoretical continuum spectrum using rebinw() conspc = rebinw(conflx,CWVL,wgrid,/perbin) ;[ph/s/cm^2/bin] ; Derive predicted flux spectrum. WVLS=0.5*(WGRID[1:*]+WGRID) newEffAr=(interpol(pspc_effar,pspc_wvlar,WVLS) > 0) < (max(pspc_effar)) flxspc = (linspc + conspc) * newEffAr ; Derive predicted counts spectrum. flxspc=flxspc*EXPTIME*1e3 ;[ct/bin] ; Restrict the counts spectrum to the specified ACIS-I range oo = where(wgrid ge wmin_rosat and wgrid le wmax_rosat) flxspc = flxspc(oo)
; Now get the total count rate and renormalize the DEM to the ; observed rate of 0.1 ct/s. pred_rate = total(flxspc/EXPTIME/1e3) ;[ct/s] print,'' if obs_rate gt 0 then $ print,'Rescaling input DEM by a factor '+strtrim(obs_rate/pred_rate,2) print,'' rescale_factor=1.0 if obs_rate gt 0 then rescale_factor = obs_rate/pred_rate !DEM = !DEM * rescale_factor linint = linint * rescale_factor conint = conint * rescale_factor linflx = linflx * rescale_factor conflx = conflx * rescale_factor
; To construct the XMM spectra, we use the line and continuum ; emissivities read in above (LCONF and CCONF), the line and ; continuum intensities (LININT and CONINT) and fluxes (LINFLX ; and CONFLX) computed above, and recompute the predicted fluxes ; using XMM ARFs, and finally compute the observed spectra by ; convolving with the RMFs.
A] Read in line cooling emissivities and calculate line intensities help,lconf,linint
B] Read in line cooling emissivities and calculate line intensities help,cconf,conint
C] Correct for inter-stellar absorption help,ltau,ltrans,linflx,ctau,ctrans,conflx
D] Bin spectra and fold in effective area EMAX = !fundae.kevang/!WMIN & EMIN = !fundae.kevang/!WMAX dnrg = float((EMAX-EMIN)/nwbin) ; bin size egrid = findgen(nwbin+1L)*dnrg+EMIN ; bin boundaries [keV] emid = 0.5*(egrid[1:*]+egrid) ; mid-bin values [keV] wvls = !fundae.kevang/emid ; [ang] linspc = hastogram(!fundae.kevang/abs(LWVL),egrid,wts=linflx) ; [ph/s/cm^2/bin] conspc = rebinw(conflx,!fundae.kevang/CWB,egrid,/perbin) ; [ph/s/cm^2/bin] ;Read in the effective areas using rdarf() if strlowcase(pn_ARF) eq 'none' then effar_pn=0*emid+1. else $ effar_pn = rdarf(pn_ARF,pn_ARF_str) if strlowcase(mos_ARF) eq 'none' then effar_mos=0*emid+1. else $ effar_mos = rdarf(mos_ARF,mos_ARF_str) if strlowcase(rgs1_ARF) eq 'none' then effar_rgs1=0*emid+1. else $ effar_rgs1 = rdarf(rgs1_ARF,rgs1_ARF_str) if strlowcase(rgs2_ARF) eq 'none' then effar_rgs2=0*emid+1. else $ effar_rgs2 = rdarf(rgs2_ARF,rgs2_ARF_str) ;figure out the wavelength grid for effective areas if n_tags(pn_ARF_str) eq 0 then nrgar_pn=emid else $ nrgar_pn = (0.5*(pn_ARF_str.ELO +pn_ARF_str.EHI)) if n_tags(mos_ARF_str) eq 0 then nrgar_mos=emid else $ nrgar_mos = (0.5*(mos_ARF_str.ELO+mos_ARF_str.EHI)) if n_tags(rgs1_ARF_str) eq 0 then nrgar_rgs1=emid else $ nrgar_rgs1 = (0.5*(rgs1_ARF_str.ELO+rgs1_ARF_str.EHI)) if n_tags(rgs2_ARF_str) eq 0 then nrgar_rgs2=emid else $ nrgar_rgs2 = (0.5*(rgs2_ARF_str.ELO+rgs2_ARF_str.EHI)) ;interpolate to put effective area on binned spectra grids new_effar_pn = (interpol(effar_pn ,nrgar_pn ,EMID) > 0) < (max(effar_pn)) new_effar_mos = (interpol(effar_mos ,nrgar_mos ,EMID) > 0) < (max(effar_mos)) new_effar_rgs1 = (interpol(effar_rgs1,nrgar_rgs1,EMID) > 0) < (max(effar_rgs1)) new_effar_rgs2 = (interpol(effar_rgs2,nrgar_rgs2,EMID) > 0) < (max(effar_rgs2)) ;[ct/s/bin] (if DEM is [cm-5]: [ct/s/cm2/bin]) flxspc_pn = (linspc + conspc) * new_effar_pn flxspc_mos = (linspc + conspc) * new_effar_mos flxspc_rgs1 = (linspc + conspc) * new_effar_rgs1 flxspc_rgs2 = (linspc + conspc) * new_effar_rgs2 ;Derive predicted counts spectrum flxspc_pn = flxspc_pn *EXPTIME*1e3 ;[ct/bin] flxspc_mos = flxspc_mos *EXPTIME*1e3 ;[ct/bin] flxspc_rgs1 = flxspc_rgs1 *EXPTIME*1e3 ;[ct/bin] flxspc_rgs2 = flxspc_rgs2 *EXPTIME*1e3 ;[ct/bin]
E] Convolve with RMF using ; read in RMFs pn_RMF_str=rd_ogip_rmf(pn_RMF) mos_RMF_str=rd_ogip_rmf(mos_RMF) rgs1_RMF_str=rd_ogip_rmf(rgs1_RMF) rgs2_RMF_str=rd_ogip_rmf(rgs2_RMF) conv_rmf, egrid, flxspc_pn, CHAN_pn, CTSPC_pn, pn_RMF_str conv_rmf, egrid, flxspc_mos, CHAN_mos, CTSPC_mos, mos_RMF_str conv_rmf, egrid, flxspc_rgs1, CHAN_rgs1, CTSPC_rgs1, rgs1_RMF_str conv_rmf, egrid, flxspc_rgs2, CHAN_rgs2, CTSPC_rgs2, rgs2_RMF_str
; Get co-added RGS spectrum. CHAN_rgs = CHAN_rgs1 ;[keV] CTSPC_rgs = CTSPC_rgs1 + CTSPC_rgs2 ;[ct/bin] valid grids same flxspc_rgs = flxspc_rgs1+flx_spc_rgs2 ;[ct/bin] (if sperate ARF) ; Restrict the spectra to the specified range oo_rgs = where(CHAN_rgs gt emin_xmm and CHAN_rgs lt emax_xmm) oo_mos = where(CHAN_mos gt emin_xmm and CHAN_mos lt emax_xmm) oo_pn = where(CHAN_pn gt emin_xmm and CHAN_pn lt emax_xmm) CTSPC_rgs1 = CTSPC_rgs1(oo_rgs) & CHAN_rgs1 = CHAN_rgs1(oo_rgs) CTSPC_rgs2 = CTSPC_rgs2(oo_rgs) & CHAN_rgs2 = CHAN_rgs2(oo_rgs) CTSPC_rgs = CTSPC_rgs(oo_rgs) & CHAN_rgs = CHAN_rgs(oo_rgs) CTSPC_mos = CTSPC_mos(oo_mos) & CHAN_mos = CHAN_mos(oo_mos) CTSPC_pn = CTSPC_mos(oo_pn) & CHAN_pn = CHAN_pn(oo_pn) ; Note that the output energy grid of the spectra will be by ; default the energy grid defined by the RMF. The spectrum ; however will only show lines and continuum between the ; selected wavelength ranges.
; The final step is a simulation of counts based on the spectrum ; predicted above nbin_pn = n_elements(CTSPC_pn) & CTSIM_pn = intarr(nbin_pn) nbin_mos = n_elements(CTSPC_mos) & CTSIM_mos = intarr(nbin_mos) nbin_rgs = n_elements(CTSPC_rgs) & CTSIM_rgs = intarr(nbin_rgs) for i=0L,nbin_pn-1L do if CTSPC_pn[i] gt 0 then $ CTSIM_pn[i] =randomu(seed,poisson=CTSPC_pn[i]) for i=0L,nbin_mos-1L do if CTSPC_mos[i] gt 0 then $ CTSIM_mos[i]=randomu(seed,poisson=CTSPC_mos[i]) for i=0L,nbin_rgs-1L do if CTSPC_rgs[i] gt 0 then $ CTSIM_rgs[i]=randomu(seed,poisson=CTSPC_rgs[i]) ; The results of the calculations are plotted below ; The EPIC-pn model (in white) and simulated counts (in red) window, 0 plot, CHAN_pn, CTSPC_pn, title='XMM EPIC-PN MODEL SPECTRUM',/xl,/yl,$ xtitle='[keV]', ytitle='[ct]', ystyle=1, xstyle=1, $ xrange=[emin_xmm,emax_xmm], yrange=[0.5,2*max(CTSPC_pn)] & stample oplot, CHAN_pn, CTSIM_pn ,color = 2, psym=10, thick=2 ; The EPIC-mos model (in white) and simulated counts (in red) window, 1 plot, CHAN_mos, CTSPC_mos, title='XMM EPIC-MOS MODEL SPECTRUM',/xl,/yl,$ xtitle='[keV]', ytitle='[ct]', ystyle=1, xstyle=1, $ xrange=[emin_xmm,emax_xmm], yrange=[0.5,2*max(CTSPC_mos)] & stample oplot, CHAN_mos, CTSIM_mos, color = 2, psym=10, thick=2 ; The RGS model (in white) and simulated counts (in red). Also shown ; are the model counts from RGS1 (yellow) and RGS2 (green) window, 2 plot, !fundae.kevang/CHAN_rgs, CTSIM_rgs, title='XMM RGS MODEL SPECTRUM',$ xtitle='['+!AA+']', ytitle='[ct]', ystyle=1, xstyle=1, /nodata,$ xrange=[!fundae.kevang/MAX(CHAN_rgs),!fundae.kevang/MIN(CHAN_rgs)],$ yrange=[0,1.1*max(CTSIM_rgs)] oplot, !fundae.kevang/CHAN_rgs, CTSIM_rgs, color=2, psym=10, thick=2 oplot, !fundae.kevang/CHAN_rgs1, CTSPC_rgs1, color=3, psym=10, thick=2 oplot, !fundae.kevang/CHAN_rgs2, CTSPC_rgs2, color=4, psym=10, thick=2 ; As above, but zoomed in to show the low counts detail. window, 3 plot, !fundae.kevang/CHAN_rgs, CTSIM_rgs, title='XMM RGS MODEL SPECTRUM',$ xtitle='['+!AA+']', ytitle='[ct]', ystyle=1, xstyle=1, /nodata,$ xrange=[!fundae.kevang/MAX(CHAN_rgs),!fundae.kevang/MIN(CHAN_rgs)],$ yrange=[0,5.*median(CTSPC_rgs)>5.] oplot, !fundae.kevang/CHAN_rgs, CTSIM_rgs, color=2, psym=10 oplot, !fundae.kevang/CHAN_rgs1, CTSPC_rgs1, color=3, psym=10 oplot, !fundae.kevang/CHAN_rgs2, CTSPC_rgs2, color=4, psym=10 ; We may summarize results as follows: ; ; Simulated counts spectra are in: ; CTSIM_pn(chan_pn),CTSIM_mos(CHAN_mos),CTSIM_rgs(CHAN_rgs) [ct/bin] ; ; Redistributed counts spectra are in: ; CTSPC_pn(chan_pn),CTSPC_mos(CHAN_mos),CTSPC_rgs(CHAN_rgs) [ct/bin] ; ; Predicted counts spectra are in: ; FLXSPC_pn(wvls),FLXSPC_mos(wvls), FLXSPC_rgs(wvls) [ct/bin] ; ; Note: Standard RGS response matrices include the effective area, so, unless ; a seperate rmf and effective area files are used, FLXSPC_rgs will ; NOT contain predicted counts spectra. ; ; Theoretical line fluxes are in: ; linspc(lwvl) [ph/s[/cm^2]] ; ; Theoretical continuum fluxes are in: ; conspc(cwvl) [ph/s[/cm^2]]
; Results using this thread are roughly consistent with ; PIMMS results. PIMMS returned the following XMM count rates ; for a ROSAT/PSPC count rate of 0.1 cts/s and a Raymond-Smith ; model of temperature 0.5437 keV: ; XMM PN MED : 7.792E-01 cts/s ; XMM MOS MED : 1.958E-01 cts/s ; XMM RGS1 O1 : 2.629E-02 cts/s ; XMM RGS2 O1 : 3.627E-02 cts/s ; ; Running this thread with !ABUND = getabund('Allen'), ; T_components = [6.8], and obs_rate = 0.1 gives: ; XMM PN MED : 0.74 cts/s ; XMM MOS MED : 0.19 cts/s ; XMM RGS1 O1 : 0.027 cts/s ; XMM RGS2 O1 : 0.035 cts/s