Coded-Aperture Imaging

JaeSub Hong Fall, 2011 MIT

Outline

- **1. A Brief History of X-ray Astronomy**
- **2. Coded Aperture Imaging**

What is an X-ray?

Discovery of X-rays

Print of Wilhelm Röntgen's first "medical" X-ray, of his wife's hand, taken on 22 December 1895 [Wiki]

X-rays from Sky

Beginning of X-ray Astronomy or not?

Bumper V-2 Rocket Launch, July 24, 1950 [Wiki]

Beginning of X-ray Astronomy

• **On June 12, 1962, an Aerobee 150 rocket was launched for an attempt to observe Xrays from the moon.**

Riccardo Giacconi

Beginning of X-ray Astronomy

• **On June 12, 1962, an Aerobee 150 rocket was launched for an attempt to observe Xrays from the moon.**

No chance! But …

• **The instrumentation was not equipped with collimation to restrict the field of view narrowly.**

Riccardo Giacconi

• **It detected the first X-rays from another celestial source (Scorpius X-1) at J1950 RA 16h 15m Dec -15.2**°**.**

• **Sco X-1 is a Low Mass X-ray Binary with a Neutron Star [Wiki].**

How Bright?

X-ray luminosity of celestial objects

Moon ~1012 erg/s ~100 kW Sun ~1027 erg/s ~109 TW X-ray Binaries ~1038 erg/s ~1020 TW Our Galaxy ~1039 erg/s ~1021 TW Supernova ~1041 erg/s ~1023 TW Active Galactic Nuclei ~1047 erg/s ~1029 TW Gamma-Ray Bursts ~1052 erg/s ~1034 TW

X-ray Telescopes

(1999/07/22 -)

Optical Telescope Assembly Normal Incidence Optics

How do you build X-ray Telescopes?

Inferior Mirage

Shallow Angle Reflection

Chandra X-ray Observatory Grazing Incidence Optics: up to ~10 keV

Grazing Incidence + Multi-Layer Optics Up to ~70 – 80 keV

- **IR, Visible, UV: Normal Incidence Optics**
- **Soft X-ray, Hard X-ray < 10 keV: Grazing incidence < 100 keV: Grazing+MultiLayer Optics**
- **What about X-rays above 100 keV?**
- **How to cover wide field?**

Coded-Aperture Imaging

Coded-Aperture Imagers

> **Swift/BAT 2004/11/20 -**

INTEGRAL/IBIS & SPI 2002/10/17 -

Pin Hole Camera

►**Low sensitivity**

Pin Hole Camera

Dicke (1968)

Coded-Aperture Imaging Telescope

at a distance of 700m (Phase 5B)

Basics in Coded-Aperture Imaging Angular Resolution & Localization

mask pixel: m = 1.536 mm detector pixel: d= 0.768 mm mask-detector separation: f = 25 cm

Angular Resolution:

θ ~ atan (m/f) = 21.1' (if d<<m) 4.3 m at 700 m

θ = atan (sqrt (m2+d2)/f) =23.6' 4.8 m at 700 m

Source Localization: δ = a θ/(σ**+b) = 2.94' for 90% radius, 5σ source, a~0.7, b~0**

Basics in Coded-Aperture Imaging: Effective Area

- **What determines the sensitivity of a telescope?**
- **More light collection** ► **More sensitive**
- **The size does matter. But the size of what?**

focusing telescopes: mirror size non-focusing telescopes: detector size

• **Geometric Area (***Ag***eo) vs Effective Area (***A***eff)** $A_{\text{eff}} = A_{\text{geo}} * F_{\text{effic}}(E) * F_{\text{atten}}(E) * F_{\text{mask}}(E) * ...$

Image Reconstruction: Simple inversion

Image Reconstruction: Simple inversion

*M***–1 is hard to find, sometimes there isn't one. Inversion introduces Quantum Noise.**

Image Reconstruction: Cross Correlation

Cross-Correlation allows Fast Fourier Transformation (FFT)

Mask Pattern

• **Random Pattern no constraint on mask geometry Introduces coding noise** $\sim 1/N^{0.5}$ **N = number of mask pixels**

Side Lobe

Mask Pattern

• **Uniformly Redundant Array (URA) Fenimore (~1980)**

 $(a M + b) \cdot M = I$

e.g. 2x2 cycle pattern Detector should sample 1x1 cycle

- **No coding noise**
- **No quantum noise**
- **limited geometries available**
- **ghost images**
- **Often hard to perfect it**

Random vs URA mask

Random Mask URA Mask

Gaussian or Normal Distribution

- **When the mean number of expected photon counts is** *N***, its standard deviation (1**σ**) is** *N***0.5.**
- **For 68% of trials, we will get photons in between** *N***–***N***0.5 and** *N***+***N***0.5.**
- **e.g. When** *N***=25, its standard deviation is 5. If you repeat the experiments, you should get photons somewhere between 20 and 30 for 68% of the trials.**
- \cdot **1** σ = $N^{0.5}$ covers 68.2% **2** σ **= 2** *N***0.5 covers 95.4% 3** σ **= 3** *N***0.5 covers 99.7% ….**
- *N***0.5 works for unitless counts e.g.** *V =Q/C= e N/C*

Signal-to-Noise Ratio (SNR) in Focusing Telescopes

• **Quantify the significance of detection**

SNR = *S***/***B***0.5** $=$ *s* A_m *T* **/ (***b* ΔA_d *T***)^{0.5} =** *s***/***b***0.5** *Am T***0.5/**∆*Ad* **0.5**

SNR ~ *s Am*

*S***: Total Source Counts** *B***: Background Counts in PSF**

*s***: Source flux (cts/sec/cm2)** *b***: Background rate (cts/sec/cm2)**

*Am***: Collecting Area of Mirror** *Ad***: Effective Area of Detector** [∆]*Ad***: PSF Size <<** *Ad T***: Exposure in sec**

To claim a detection, SNR > ~3 – 5

Signal-to-Noise Ratio (SNR) in Coded-Aperture Imaging

An Ideal Case with URA

SNR =
$$
S/(B+S)^{0.5*}
$$

= s A_d T / ((b+s) A_d T)^{0.5}
= s (A_d T)^{0.5}/(b+s)^{0.5}

 $SNR \sim (s \, A_d)^{0.5}$ **even when b=0**

- *S***: Total Source Counts** *B***: Total Background Counts**
- *s***: Source flux (cts/sec/cm2)** *b***: Background rate (cts/sec/cm2)**
- *Ad***: Effective Area of Detector** *T***: Exposure in sec**

To claim a detection, SNR > ~5 – 7 *Without Imaging factor: 1 – d/(3 m) SNR drops by 20-30% if d~m. (Skinner 2008)

Examples of 10 point sources

Color scale High counts

Low counts

a single source

Pixellated Detector with Poisson Noise

Sky Image (FCFoV)

Pixellated Detector with Poisson Noise

Sky Image (FCFoV)

Source at infinity

Back Projection

Challenges for REXIS

- **Diffuse Sources : redefine SNR**
- **Terminator Orbit**
- **Finite and varying source distances**
- **Scanning Coded-Aperture**
- **Solar flux dependence**
- **Not trivial to handle background subtraction or non-uniformity in the detector**
- **Regolith and surface non-uniformity unrelated atomic element composition**

• **Open Hole Fraction**

> Impact count rate; we may need >50% for >1keV.

> Energy dependent multi open fractional Mask?

• **Mask Pixel Size**

> Impact Memory Requirement

> Multi-scale mask to cover a wide range of blob sizes?

• **Mask Pattern (Random vs MURA, 2 Scale Mask) > For (M)URA, allow one-full cycle in the detector with magnification factor**

> Reverse mask pattern on one side for terminator orbits?

Example of Mask Patterns

Example of Mask Patterns

INTEGRAL/SPI: HURA 2 scale mask (Skinner & Grindlay)

Multi Open Fraction Mask for REXIS? e.g. 20% at 0.5 keV and 50% at 2 keV with multi-layer mask?

- **Open Hole Fraction > Impact count rate**
- **Mask Pixel Size> Impact Memory Requirement**
- **Mask Pattern (Random vs MURA, 2 Scale Mask)**

- **Open Hole Fraction > Impact count rate**
- **Mask Pixel Size> Impact Memory Requirement**
- **Mask Pattern (Random vs MURA, 2 Scale Mask)**

- **Open Hole Fraction > Impact count rate**
- **Mask Pixel Size> Impact Memory Requirement**
- **Mask Pattern (Random vs MURA, 2 Scale Mask)**

- **Open Hole Fraction > Impact count rate**
- **Mask Pixel Size> Impact Memory Requirement**
- **Mask Pattern (Random vs MURA, 2 Scale Mask)**

Overview

Solar X-rays XRF from RQ36

- **X-ray Shadow on REXIS CCD by the mask**
- **Charges collected on CCD**
- **Amplified and Readout at a fixed cycle**
- **Series of x, y, E with Time tag**
- **Detector Image**
- **Sky Image**
- **Projection on RQ36 (or Back Projection)**
- **Map of Atomic Element Composition**

REXIS

Examples of Magnification & Poisson Noise (URA)

Perfect Detector Without Poisson Noise

Pixellated Detector Without Poisson Noise **Pixellated Detector with Poisson Noise**

Examples of Magnification & Poisson Noise (Random Mask)

Perfect Detector Without Poisson Noise

Pixellated Detector Without Poisson Noise

Pixellated Detector with Poisson Noise

Reconstructed Sky Image (FCFoV)

Detector Image

