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What is an X-ray?



Discovery of X-rays

Print of Wilhelm Röntgen's first "medical" X-ray, 
of his wife's hand, 

taken on 22 December 1895 [Wiki]



X-rays from Sky



Beginning of X-ray Astronomy or not?

Bumper V-2 Rocket Launch, July 24, 1950 [Wiki]



Beginning of X-ray Astronomy

Riccardo Giacconi

• On June 12, 1962, an Aerobee 150 rocket 
was launched for an attempt to observe X-
rays from the moon.



Beginning of X-ray Astronomy

No chance! But …

• The instrumentation was not equipped 
with collimation to restrict the field of view 
narrowly.

• It detected the first X-rays from another 
celestial source (Scorpius X-1) at J1950 RA 
16h 15m Dec -15.2°. 

• Sco X-1 is a Low Mass X-ray Binary with a 
Neutron Star [Wiki].

• On June 12, 1962, an Aerobee 150 rocket 
was launched for an attempt to observe X-
rays from the moon.

Riccardo Giacconi



How Bright?

X-ray luminosity of celestial objects

Moon ~1012 erg/s ~100 kW
Sun ~1027 erg/s ~109 TW

X-ray Binaries ~1038 erg/s ~1020 TW
Our Galaxy ~1039 erg/s ~1021 TW
Supernova ~1041 erg/s ~1023 TW

Active Galactic Nuclei ~1047 erg/s ~1029 TW
Gamma-Ray Bursts ~1052 erg/s ~1034 TW



X-ray Telescopes

Chandra X-ray Observatory

Chandra X-ray 
Observatory

(1999/07/22 - )

XMM-Newton
(1999/12/10 - )
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Optical Telescope Assembly
Normal Incidence Optics



How do you build X-ray Telescopes?





Inferior Mirage



Shallow Angle Reflection



Chandra X-ray Observatory
Grazing Incidence Optics: up to ~10 keV



Grazing Incidence + Multi-Layer Optics
Up to ~70 – 80 keV

The Nuclear Spectroscopic Telescope Array
(NuSTAR) 2012

Inferior Mirage



• IR, Visible, UV: Normal Incidence Optics
• Soft X-ray, Hard X-ray

< 10 keV: Grazing incidence 
< 100 keV: Grazing+MultiLayer Optics

• What about X-rays above 100 keV? 
• How to cover wide field?



Coded-Aperture Imaging



Coded-Aperture 
Imagers

Swift/BAT
2004/11/20 -

INTEGRAL/IBIS & SPI
2002/10/17 -



Collimator

Simple, but not a real imager
Field of View = Angular Resolution

Detector

Collimator



Pin Hole Camera

A real imager but extremely inefficient 
►Low sensitivity
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Pin Hole Camera

Mertz & Young (1961); 
Dicke  (1968)
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Coded-Aperture Imaging Telescope

Decoding Shadowgram 
allows wide-field imaging.

Mask
Gold, Lead, Tungsten, …

Detector
Soft X-ray : X-ray CCD, …
Hard X-ray : CdZnTe, Ge, …



Field of View & Coding Fraction

Mask

Detector

Side Shield



Field of View & Coding Fraction

Mask

Detector

Side Shield



Field of View & Coding Fraction

Mask

Detector

Side Shield



Field of View & Coding Fraction

Fully Coded FoV
100% coding

Mask

Detector

Side Shield



Field of View & Coding Fraction

Mask

Detector

Side Shield



Field of View & Coding Fraction

FWHM

Partially 
Coded FoV

Partially 
Coded FoV

Mask

Detector

Side Shield

Fully Coded FoV
100% coding

Full Width Half 
Maximum (FWHM)



Field of View & Coding Fraction

FWHM

Partially 
Coded FoV

Partially 
Coded FoV

FWZI

0% coding0% coding

Mask

Detector

Side Shield

Fully Coded FoV
100% coding

Full Width Zero 
Intensity (FWZI)



Field of View & Coding Fraction

at a distance of 700m (Phase 5B)



Basics in Coded-Aperture Imaging
Angular Resolution & Localization

mask pixel: m = 1.536 mm
detector pixel: d= 0.768 mm
mask-detector separation: f = 25 cm

Angular Resolution: 
θ ~ atan (m/f) = 21.1’ (if d<<m)
 4.3 m at 700 m

θ = atan (sqrt (m2+d2)/f) =23.6’
 4.8 m at 700 m

Source Localization: 
δ = a θ/(σ+b) = 2.94’
for 90% radius, 5σ source, 
a~0.7, b~0

Mask

Detector

θ

f

m

d



Basics in Coded-Aperture Imaging:
Effective Area

• What determines the sensitivity 
of a telescope?

• More light collection
►More sensitive

• The size does matter. But the size of what?

focusing telescopes: mirror  size
non-focusing telescopes: detector size

• Geometric Area (Ageo) vs Effective Area (Aeff)
Aeff = Ageo * Feffic(E) * Fatten(E) * Fmask(E) * …
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Sky (S)

Image Reconstruction:
Simple inversion

D = M· SS’ = M–1· D
= M–1· M · S  
= S

Detector 
Response (D)

Reconstructed 
Sky Image (S’=S)

Mask (M)



Sky (S)

Image Reconstruction:
Simple inversion

D = M· S + O(M· S)0.5 + BS’ = M–1· D
= S + M–1· O (M· S)0.5 +M–1· B 
≠ S

Detector 
Response (D)

Reconstructed 
Sky Image (S’)

M–1 is hard to find, sometimes there isn’t one.
Inversion introduces Quantum Noise.



Sky (S)

Image Reconstruction:
Cross Correlation

Detector 
Response (D)

Reconstructed 
Sky Image (S’)

Cross-Correlation allows Fast Fourier Transformation (FFT)

D = M· S + O(M· S)0.5 + BS’ = M’· D
~ S + M’· O(M· S)0.5 +M’· B 
~ S + const

where M’ = a M +b
(e.g. M’ = 2 M–1 for 50% open mask)



Mask Pattern

Side Lobe

• Random Pattern
no constraint on mask geometry
Introduces coding noise

~ 1/N0.5 

N = number of mask pixels

Point Spread 
Function



Mask Pattern

• Uniformly Redundant Array (URA)
Fenimore (~1980)

(a M + b)· M = I

e.g. 2x2 cycle pattern 
Detector should sample 1x1 cycle

• No coding noise
• No quantum noise
• limited geometries available 
• ghost images
• Often hard to perfect it

Point Spread 
Function

No Side Lobe



Random vs URA mask

Detector 
Image

Reconstructed
Sky  Image

(50% coding
FWHM)

Random Mask URA Mask

Color scale
High counts

Low counts



Gaussian or Normal Distribution
• When the mean number of expected photon counts is N,  

its standard deviation (1σ) is N0.5.

• For 68% of trials,  we will get photons in between N–N0.5 and N+N0.5.

• e.g. When N=25, its standard deviation is 5. If you repeat the 
experiments,  you should get photons somewhere between 20 and 
30 for 68% of the trials.

• 1 σ = N0.5 covers 68.2%
2 σ = 2 N0.5 covers 95.4%
3 σ = 3 N0.5 covers 99.7%
….

• N0.5 works for unitless counts
e.g.  V =Q/C=  e N/C

µ = N
σ = N0.5



Signal-to-Noise Ratio (SNR) in Focusing Telescopes

• Quantify the significance of detection

SNR = S/B0.5

= s Am T / (b ∆Ad T)0.5

= s/b0.5  Am T0.5/∆Ad
0.5

SNR ~ s Am

S: Total Source Counts 
B: Background Counts in PSF

s: Source flux (cts/sec/cm2) 
b: Background rate (cts/sec/cm2)

Am: Collecting Area of Mirror 
Ad: Effective Area of Detector
∆Ad: PSF Size << Ad

T: Exposure in sec

To claim a detection,  SNR > ~3 – 5     
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Signal-to-Noise Ratio (SNR) in Coded-Aperture Imaging
An Ideal Case with URA

SNR = S/(B+S)0.5 *

= s Ad T / ((b+s) Ad T) 0.5

= s (Ad T) 0.5/(b+s) 0.5

SNR ~ (s Ad) 0.5

even when b=0

S: Total Source Counts 
B: Total Background Counts

s: Source flux (cts/sec/cm2) 
b: Background rate (cts/sec/cm2)

Ad: Effective Area of Detector 
T: Exposure in sec

To claim a detection,  SNR > ~5 – 7      
*Without Imaging factor: 1 – d/(3 m) 
SNR drops by 20-30% if d~m.  
(Skinner 2008)   
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Examples of 10 point sources

Pixellated Detector
with Poisson Noise

Sky Image (FCFoV)

Pixellated Detector
with Poisson Noise

Sky Image (FCFoV)

a single source

Color scale
High counts

Low counts



Source at infinity

Mask

Detector

Side Shield



Source at a finite distance

Mask

Detector

Side Shield

RQ36

REXIS: mag factor
0.25/10 m  = 2.5%
0.25/100 m= 0.25% 
0.25/500 m= 0.050%  
0.25/700 m= 0.036%
0.25/950 m= 0.026% 



Back Projection

Mask

Detector

Side Shield

A detected X-ray

RQ36



Back Projection

Mask

Detector

Side Shield

RQ36



Challenges for REXIS

• Diffuse Sources : redefine SNR

• Terminator Orbit

• Finite and varying source distances

• Scanning Coded-Aperture

• Solar flux dependence

• Not trivial to handle background subtraction or non-uniformity
in the detector

• Regolith and surface non-uniformity unrelated
atomic element composition



Mask Design for REXIS

• Open Hole Fraction
> Impact count rate; we may need >50% for >1keV.
> Energy dependent multi open fractional Mask?

• Mask Pixel Size
> Impact Memory Requirement
> Multi-scale mask to cover a wide range of blob sizes?

• Mask Pattern (Random vs MURA, 2 Scale Mask)
> For (M)URA, allow one-full cycle in the detector

with magnification factor
> Reverse mask pattern on one side for terminator orbits?



Swift/BAT
2004/11/20 -

Example of Mask Patterns



Example of Mask Patterns

Multi Open Fraction Mask for REXIS?
e.g. 20% at 0.5 keV and 50% at 2 keV with multi-layer 

mask? 

INTEGRAL/SPI: HURA 2 scale mask 
(Skinner & Grindlay)



Mask Design for REXIS
• Open Hole Fraction > Impact count rate
• Mask Pixel Size> Impact Memory Requirement
• Mask Pattern (Random vs MURA, 2 Scale Mask)



Mask Design for REXIS
• Open Hole Fraction > Impact count rate
• Mask Pixel Size> Impact Memory Requirement
• Mask Pattern (Random vs MURA, 2 Scale Mask)



Mask Design for REXIS
• Open Hole Fraction > Impact count rate
• Mask Pixel Size> Impact Memory Requirement
• Mask Pattern (Random vs MURA, 2 Scale Mask)

Collimator Mode
(minimum ~ 200 m?)



Mask Design for REXIS
• Open Hole Fraction > Impact count rate
• Mask Pixel Size> Impact Memory Requirement
• Mask Pattern (Random vs MURA, 2 Scale Mask)

2-scale mask?



Overview

Solar X-rays
XRF from RQ36

 X-ray Shadow on REXIS CCD by the mask
 Charges collected on CCD
 Amplified and Readout at a fixed cycle
 Series of x, y, E with Time tag

 Detector Image
 Sky Image
 Projection on RQ36 (or Back Projection)
 Map of Atomic Element Composition

Sun
RQ36

REXIS



Examples of Magnification & Poisson Noise
(URA)

Detector 
Image

Reconstructed
Sky 

Image
(FCFoV)

Perfect Detector
Without Poisson Noise

Pixellated Detector
Without Poisson Noise

Pixellated Detector
with Poisson Noise



Examples of Magnification & Poisson Noise
(Random Mask)

Detector 
Image

Reconstructed
Sky 

Image
(FCFoV)

Perfect Detector
Without Poisson Noise

Pixellated Detector
Without Poisson Noise

Pixellated Detector
with Poisson Noise
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