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Simple formulas are often used to estimate the sensitivity of coded mask x-ray or gamma-ray telescopes,
but these are strictly applicable only if a number of basic assumptions are met. Complications arise, for
example, if a grid structure is used to support the mask elements, if the detector spatial resolution is not
good enough to completely resolve all the detail in the shadow of the mask, or if any of a number of other
simplifying conditions are not fulfilled. We derive more general expressions for the Poisson-noise-limited
sensitivity of astronomical telescopes using the coded mask technique, noting explicitly in what circum-
stances they are applicable. The emphasis is on using nomenclature and techniques that result in simple
and revealing results. Where no convenient expression is available a procedure is given that allows the
calculation of the sensitivity. We consider certain aspects of the optimization of the design of a codedmask
telescope and show that when the detector spatial resolution and the mask to detector separation are
fixed, the best source location accuracy is obtained when the mask elements are equal in size to the
detector pixels. © 2008 Optical Society of America

OCIS codes: 340.7430, 100.1830, 110.4280.

1. Introduction

Codedmask telescopeshavebeenwidelyused inx-ray
andgamma-rayastronomy,particularlyat thoseener-
gieswhere other imaging techniques arenot available
or where the wide field of view possible with the tech-
nique is important. Recent examples of astronomical
applications of the technique include the Burst Alert
Telescope(BAT) instrumentontheSwiftspacecraft [1]
and three of the instruments on the International
Gamma-Ray Astrophysics Laboratory (INTEGRAL)
[2]; other examples are described in [3–6]. The techni-
que is based on recording the shadow of a mask con-
taining both transparent and opaque regions in a
pattern thatallowsan imageof thesourceof the radia-
tion to be reconstructed. Coded mask imaging has
beenreviewedbyCaroli etal. [7],withmore recentdis-
cussionofsomeaspectsof thetechniquebySkinner [8].
Many possible mask patterns have been discussed.

The mask may simply contain randomly placed holes
[9,10] or it may be based on geometric patterns

[11,12]; indeed, almost any design can be used with-
out losing the imaging capability [8]. Most work has
been based on patterns comprising holes placed on a
regular rectangular or hexagonal grid according to
some algorithm. Discussion of the choice of algorithm
for placing the holes has concentrated on designs in
which the (cyclic) autocorrelation function of the pat-
tern, sampled at shifts corresponding to awhole num-
ber of cells of the grid, is bivalued with a central peak
and flat wings. An extensive literature [13–28] exists
on arrays which have this property, which are usually
termed uniformly redundant arrays (URAs). For
URA-based masks, in certain well-defined circum-
stances, cross correlation of the recorded data with
an arraywhich corresponds to themask pattern (with
a scaling and offset applied) leads to images with a
point source response function (PSF) having a central
peak and perfectly flat sidelobes. As image recon-
struction by cross correlation can be shown (again
in specific circumstances, to be discussed below) also
to yield the best possible signal-to-noise ratio, such so-
lutions have attracted widespread attention.

Variants of URAs have been proposed (e.g., modi-
fied uniformly redundant arrays, MURAs [29]; see
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also [30]) in which the same ideal PSF is obtained
when the reconstructing array differs marginally
from the coding pattern. Provided the number of ele-
ments is large, the signal-to-noise ratio is essentially
the same as for URAs.
URAs (and MURAs) provide a mathematically sa-

tisfying solution to the problem of mask design, but
their advantages in practice are less evident. The cir-
cumstances in which the ideal response is obtained
relate to the cyclic nature of the patterns. The PSF
is free from spurious responses (ghosts or sidelobes)
only if the shadow recorded is always of a whole num-
ber of cycles of a repeating pattern. It can be arranged
that this condition is met over a limited field [the so-
called fully coded field of view (FCFOV)] but for
sources outside this region [in the partially coded field
of view (PCFOV)] the shadow of the edge of the mask
will appear in the recorded data. Sources in the
PCFOV can produce spurious responses within the
FCFOV and vice versa. It is possible to block with a
collimator consisting of slats or tubes the flux from
sources in the PCFOV but, as pointed out by [31], this
not only narrows the observable field but results in
attenuation of the recorded signal even within the
FCFOV. Thus, it is often the case that random mask
patterns are as good as any other and indeed a ran-
dompatternwas selected for themask of the very suc-
cessful BAT instrument on the Swift satellite [32].
The ghost images and other imaging artifacts that

arise from partial coding, from nonuniform back-
ground, or from other effects present in real instru-
ments can be alleviated provided one has a good
understanding of the instrument and adequate com-
puting resources. Although for sufficiently long ob-
servations or combinations of observations these
systematic errors will inevitably become important,
many methods are available to reduce them [33–43].
Typically these involve fitting and subtracting bright
sources, or otherwise taking them into account, and
carefully modeling background nonuniformities.
Even with advanced image reconstruction techni-

ques Poisson (or photon) noise due to limited count-
ing statistics leads to random errors, placing a limit
on the sensitivity. This limit is particularly impor-
tant for very short observations of relatively bright
sources, as is the case in the detection of gamma-
ray bursts, for example. However, even for long-term
survey observations it places an intrinsic limit on the
sensitivity that can be achieved, however sophisti-
cated the analysis technique.
We here consider the calculation of the statistical

limit to the significance with which a point source
can be observed in the presence of Poisson noise on
both the flux from the source and the detector back-
ground. We pay particular attention to the assump-
tions that are made in the derivation of the
formulas and the circumstances in which they are
valid. In Section 2 we list the assumptions that have
been made, explicitly or implicitly, in many previous
approaches to this problem. In successive sections
we attempt to provide useful expressions for the

signal-to-noise ratio where subsets of these assump-
tions do not hold.

As we deal only with the Poisson-noise-limited sen-
sitivityof theinstrument, theformulasgivenhereonly
place an upper bound on the signal-to-noise ratio that
canbeobtained.Thefluxisassumedtobeassessedbya
procedure which maximizes the signal-to-noise ratio
for the source in the presence of an unknown uniform
detector background. In effect, data fromall the detec-
torpixelsare combined,withweights thatachieve this
objective, but that consequently do not necessarily
minimize imaging artifacts.Artifacts due to imperfect
modeling of the background, to imaging in regions of
the PCFOV where the instrument imaging response
is intrinsically poor, or to using in the analysis an in-
sufficiently precise description of the instrument re-
sponse, may add systematic noise to the Poisson
noise. If analysis methods are adopted that are de-
signed to reduce such artifacts (for example, by redu-
cing or eliminating ghost responses in images of
fields containing extended sources or multiple point
sources), theymay increase the effect of Poisson noise.
In the limit inverse matrix techniques (or inverse fil-
tering) may completely remove systematic errors but
are well known to lead to noise amplification.

By not considering errors other than statistical
ones we effectively suppose that observations are
short enough that systematic errors are well below
the limit imposed by statistics and ignore the fact that
for sufficiently long integration times they will even-
tually become important. In a well-designed instru-
ment and with appropriate treatment of the data,
performance close to the Poisson limit can neverthe-
less be achieved even for comparatively long observa-
tions, particularly if the telescope orientation is
dithered or scanned during the observation to reduce
the systematic noise, as forms part of the INTEGRAL
observing strategy [2], is important forSwift/BATsur-
vey work [44], and is planned for the Energetic X-ray
Imaging Survey Telescope (EXIST) [45,46].

It is emphasized that the sensitivity considered is
that for a point source at a known position or when
measuring the flux in a particular pixel of an image;
any flux from other point sources, or from extended
emission away from the pixel under consideration, is
handled by treating it as additional background.

2. Assumptions Frequently Made

Simpleanalysesof thesignal-to-noise ratioobtainable
with a coded mask telescope often assume, explicitly
or implicitly, that the following conditions are met:

1. Half of the mask elements are open and half
are closed (mask element open fraction f e ¼ 1

2).
2. The holes are identical and equal in size to the

pitch of the grid on which they are placed. For exam-
ple, there is no supporting structure of the sort illu-
strated in Fig. 1 and the overall open fraction f is
then equal to f e.

3. The measurement uncertainty is the same for
every detector element. We here characterize the
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source strength by the number of counts per unit area
of detector where the mask is open, S, and the back-
ground by Bf ;t , the number of background events per
unit area of detector. This implies assuming that
Bf ;t ≫ S. The subscript f ; t is a reminder that as
the background generally contains a significant
contribution from diffuse sky emission, Bf ;t will
generally be a function of f , of the solid angle of the
field of view, andof the transmission (discussedbelow)
of themask elements. It is often convenient to assume
that other sources in the field of view give rise to flux
that is uncorrelated with the shadow pattern corre-
sponding to the source under consideration. Their
contribution to the detector counts can then be consid-
ered to be smeared out and included in Bf ;t. Any such
component of Bf ;t, too, will depend on the f and the t
values.
4. Each mask element is either totally opaque

(t0 ¼ 0) or totally transparent (t1 ¼ 1). If this condi-
tion is not met, and if there is a background compo-
nent due to the sky or other sources, then Bf ;t will
also depend on the actual values of t0 and t1.
5. The number of events is such that Poisson sta-

tistics may be treated as Gaussian. It will be shown
in Section 5 that this supposition is a good one except
in the most extreme circumstances, so that even
where it is formally still being made below, it may
often be ignored.
6. The detector has perfect spatial resolution so

that the exact position of arrival of each photon is
known, as opposed to having finite size pixels or a
realistic continuous position readout with some mea-
surement uncertainty.

The signal-to-noise ratio most often evaluated is
the estimate of the intensity of the flux from a source
relative to the uncertainty in its measurement (S=σs
in the terminology used below). This can be different
from the value relative to the noise in the absence of
the source (S=σI below). We will generally consider

the former parameter because the latter can readily
be obtained from the same formulas, but where rele-
vant we will note as an assumption that it is indeed
S=σs that is required:

7. The relevant signal-to-noise ratio is the esti-
mate of the intensity of the flux from a source relative
to the uncertainty in its measurement. This assump-
tion is never needed if assumption 3 is made, as the
two signal-to-noise ratio estimates are then the same.

There are two more simplifying assumptions that we
will generally continue to make:

8. The sensitivity to be discussed is a typical
value over part or all of the region imaged and/or
the mask elements through which radiation is re-
ceived are sufficiently numerous that numbers based
on the average open fraction may be used. Results
are then the same for (M)URA-based masks and
random ones.

9. The measurement uncertainty due to back-
ground counting statistics is uniform across the de-
tector plane. Sometimes a highly nonuniform
background may be modeled and subtracted out.
Even if the expectation level of the residual back-
ground is then everywhere zero, the random fluctua-
tions can be more important in some regions than
others, in which case this assumption is not valid.

An example of when assumption 8 is important
arises when the detector plane consists of pixels that
are on the same pitch as the mask elements or one
that is a submultiple of it. If one considers only source
directions such that thedetector pixels are either fully
shadowed or fully illuminated, then the sensitivity is
the same as if the detector had perfect spatial resolu-
tion. However, in other directions the sensitivity is up
to a factor of 2 poorer. It is generally most useful to
average out such effects. An exception arises if an ob-
servation, or sequence of observations, is planned
such that, for a particular source selected for study,
the shadow boundaries always fall between detector
pixels (e.g., the seven point hexagonal pointings of the
INTEGRAL/Spectrometre pour Integral (SPI) instru-
ment [47]).

Some aspects of a real system may invalidate sev-
eral of these assumptions. For example, at high en-
ergies masks are likely to be partially transparent,
contrary to assumption 4, and the large thicknesses
which are employed to minimize the consequent loss
in sensitivity mean that the apparent hole size and
shape become functions of an off-axis angle and one
no longer has the simple situation assumed in 2.

3. Relaxing Conditions 1, 2, and 3: Allowing Masks
with Arbitrary Pattern and Detector Background not
Necessarily Dominant

Wewill consider first a codedmask telescope inwhich
themaskpattern is not necessarily 50%openand50%
closed (breaking assumption 1). Furthermore, we

Fig. 1. Part of a mask in which the opaque elements are sup-
ported by a grid with bar width g and pitch p, leaving holes of
widthm. The plot beneath shows the response of a square detector
pixel of side d as it is moved across the mask shadow along the line
shown. The widths of the transition regions are indicated in the
case where g < d < m.
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suppose that the elements are not necessarily simple
squares or hexagons and the mask pattern may con-
tain structures other than the elements themselves
(breaking assumption2), an important example being
thepresence of a supporting gridas shown inFig. 1.At
the same timewewill consider the general casewhere
it is not necessarily true that S ≪ Bf ;t, breaking
assumption 3. This case, and the associated issue of
the optimum open fraction of the mask when
S≮Bf ;t, have been discussed in the literature
[10,13,28,48–51] but we here try to provide a unified
approach and to correct some errors that have arisen.

A. Signal-to-Noise Ratio

The important parameter in this case is the open frac-
tion of the mask, f . This takes into account the frac-
tion of mask elements that are open, f e, but may also
be affected by other aspects of the design. Thus, f ¼
f eðm=pÞ2 in the case of the example structure inFig. 1.
As for the moment we still ignore any effects of finite
detector resolution, the total detector area A may be
considered to be divided into an area f A that sees the
source plus detector background (cosmic and particle)
and an area ð1 − f ÞA that measures only background.
If the source is in the PCFOV then A should be taken
as the area of that part of the detector that would, but
for the mask, see the source. The expectation values
for the counts measured in the two regions are

CS ¼ f AðSþ Bf ;tÞ; ð1Þ

CB ¼ ð1 − f ÞABf ;t: ð2Þ

Our estimate of the source strength is then

Ŝ ¼ CS

fA
−

CB

ð1 − f ÞA
; ð3Þ

with variance

σ2S ¼ CS

ðf AÞ2
þ CB

ð1 − f Þ2A2 ; ð4Þ

¼
Sþ Bf ;t

f A
þ

Bf ;t

ð1 − f ÞA
: ð5Þ

The signal-to-noise ratio of the source flux measure-
ment is thus

Ŝ
σS

¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1 − f ÞA

ð1 − f ÞSþ Bf ;t

s

ð6Þ

ðassumptions 4−9Þ:

Note that in this case we obtain the same result
whether f deviates from 1

2 because of a supporting grid

as inFig. 1, orwhether it simply reflects the fraction of
mask elements that are open (f e), or a combination of
the two. Indeed, it applies to an arbitrary mask
design.

Some particular cases are (a) the limiting case
Bf ;t ≫ S for which

Ŝ
σS

¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1 − f ÞA

Bf ;t

s

ð7Þ

ðassumptions 3−9Þ;

and (b) the special case f ¼ 1
2 for which the signal-to-

noise ratio can be written

Ŝ
σS

¼ ðS=2ÞAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðS=2Þ þ B1=2&A

q ¼
"
S
σS

#

ref
ð8Þ

ðassumptions 1; 4−9Þ;

which is simply the number of counts due to the
source divided by the square root of all the counts
(source plus background, the latter including any
contribution from other sources in the field of view).
Below we will use this value as a reference against
which to compare the sensitivity in other cases.
Finally, in (c) when both of these conditions apply
we have the widely quoted expression for the signal-
to-noise ratio for an ideal 50% open coded mask
instrument in the background dominated case

Ŝ
σS

¼ S
2

ffiffiffiffiffiffiffiffiffiffi
A

B1=2

s

ð9Þ

ðassumptions 1; 3−9Þ:

The signal-to-noise ratio as defined above is the ratio
of the source strength to the uncertainty in its mea-
sure. For knowing whether a source is significantly
detected or not, a more appropriate measure is the
ratio of the measured flux to the noise in the sur-
rounding region of an image. Consider a test position
away from the true source position. The expected dis-
tribution of events for a hypothetical source at this
position should ideally be uncorrelated with the ac-
tual distribution due to the real source. If there is
some residual correlation, then systematic effects
(ghosts or sidelobes) will result. However, we are
here concerned with random noise so we may
suppose that all the recorded events will be divided
between the region measuring the flux from the
hypothetical source and the region measuring the
background, in proportion with the areas of the
two regions
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C0
S ¼ f Aðf Sþ Bf ;tÞ; ð10Þ

C0
B ¼ ð1 − f ÞAðf Sþ Bf ;tÞ: ð11Þ

With these values Eq. (3) gives an expectation value
of zero [52,53] with variance

σ2I ¼ 1
Að1 − f Þ

"
Sþ

Bf ;t

f

#
; ð12Þ

leading to

Ŝ
σI

¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1 − f ÞA
fSþ Bf ;t

s

ð13Þ

ðassumptions 4−6; 8; 9Þ;

which differs from Eq. (6) only in the factor multiply-
ing S and can be obtained from it by omitting that
term and including the source flux in the back-
ground. The two are identical if Bf ;t ≫ S or if f ¼ 1

2.

B. Optimum Choice of f

IfBf ;t ≫ S and ifBf ;t is independent of S, then consid-
eration of Eq. (7) shows that the optimum open frac-
tion is 50%. However, in general the background may
not dominate. Bf ;t is the combination of a component
intrinsic to the detector plus one due to a combination
of diffuse sky emission and the smeared effect of
sources, other than the one of interest, in the field
of view. Thus, we may write Bf ;t ¼ Bdet þ f Bsky. Put-
ting b ¼ ðBsky=BdetÞ and s ¼ ðS=BdetÞ and solving for
the optimum value of f one finds

f optðb; sÞ ¼
1

1þ
ffiffiffiffiffiffiffi
1þb
1þs

q ð14Þ

ðassumptions 4−9Þ:

Equation (14) is equivalent to the expression given by
in ’t Zand et al. [51]. Although their result is correct,
those authors state that it is the same as that of
Fenimore [49], which is in fact different. The latter
contains an additional factor of 2, noted by Accorsi
et al. [28] as an error. It is in fact attributable to an
attempt to combine the two different signal-to-noise
ratios in Eqs. (6) and (13) above in a single expression,
which in retrospect is probably not useful.
We can measure the advantage g of using the op-

timum open fraction as the signal-to-noise ratio with
f ¼ f opt relative to that for f ¼ 1

2 given by Eq. (8).
After much manipulation it turns out that g depends
only on the value of f opt and is independent of the
particular combination of s and b which led to that
value. It is simply given by

gðb; sÞ2 ¼ 1þ 4
"
f optðb; sÞ −

1
2

#
2
: ð15Þ

Figure 2 provides a convenient nomogram for f opt
and g, which also illustrates some conclusions that
can be drawn. One sees, for example, how large b
(strong background from the sky or from sources
other than that of interest) favors low f, moving to-
ward the single pinhole camera extreme. On the
other hand, for studying a bright source (large s) high
f , more like an open light bucket, are preferable.

As has been noted by other authors, the advantage
in signal-to-noise ratio to be obtained by using a
value of f other than 1

2 is small except in the most
extreme circumstances. We note, however, that the
low values of f marginally favored from this point
of view when S ≪ Bdet ≪ Bsky can lead to important
data handling and telemetry reductions, particularly
when information about each event is recorded.

If the source to be studied dominates over the ef-
fects of intrinsic background by more than does the
combination of all other sources and the diffuse sky
emission (s > b), the optimum fraction can be larger
than 1

2. The circumstances in which this is most likely
to be relevant is when the objective is to obtain infor-
mation very quickly, for example, when studying
short bursts of emission. We note, however, that this
conclusion depends on the definition of signal-to-
noise ratio.

If it is the detectability of a source that is important,
rather than the precision with which its intensity can

Fig. 2. Top: nomogram for determining the optimum mask open
fraction f opt given the parameters b and s, which are, respectively,
the sky background and the strength of the observed source, rela-
tive to the intrinsic detector background. f opt can be read from the
horizontal scale at the intersection of lines of constant s (continu-
ous lines, logarithmically spaced) and of constant b (dashed lines,
also logarithmically spaced). The arrows illustrate the effect of a
finite detector resolution (see Subsection 6.C). Bottom: signal-to-
noise ratio when using f ¼ f opt relative to that with f ¼ 1

2.
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be measured, then it is Ŝ=σI [Eq. (13)] that should be
optimized rather than Ŝ=σS [Eq. (6)]. The flux from
the source should then be included in Bsky, not S,
andEqs. (14) and (15) andFig. 2 usedwith s set to zero
(or a small value). Figure 2 shows that f opt is always
less than 1

2 in this case.

4. Imperfect Mask Opacity/Transparency: Relaxing
Assumption 4

If the mask elements are not perfectly opaque and
transparent but have transmissions t0 and t1, respec-
tively, Eqs. (1) and (2) take the form

CS ¼ f Aðt1Sþ Bf ;tÞ; ð16Þ

CB ¼ ð1 − f ÞAðt0Sþ Bf ;tÞ: ð17Þ

Note thatBf ;t will in this case be a function of t0 and t1,
as well as of f . Following the same logic as above one
finds

Ŝ
σS

¼ Sðt1 − t0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1 − f ÞA

½ð1 − f Þt1 þ f t0&Sþ Bf ;t

s

ð18Þ

ðassumptions 5−9Þ;

and for source detection

Ŝ
σI

¼ Sðt1 − t0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1 − f ÞA

½ð1 − f Þt0 þ f t1&Sþ Bf ;t

s

ð19Þ

ðassumptions 5; 6; 8; 9Þ:

Thus, the only changes necessary to allow for a uni-
form absorption in the nominally open areas
(t1 < 1) and/or for uniform leakage through the closed
ones (t0 > 0) are to multiply the signal-to-noise ratio
by a factor of t1 − t0 and to correct the noise contribu-
tion due to source counts if this is not negligible. The
reason for the simple form of the multiplying factor
will become evident in Section 6.
Accorsi et al. [28] have treated the question of the

optimum f when the mask is leaky (t0 > 0), but un-
fortunately the expression they give contains some
typographical errors, as well as being rather complex
(although their equation for the signal-to-noise ratio
is correct, that for f opt twice has 2t in place of t). The
general case, t0 > 0 and t1 < 1, can, however, be
handled by using the equations and nomogram of
Subsection 3.B with adjusted parameters

s0 ¼ t1sþ t0b; b0 ¼ t0sþ t1b ð20Þ

in place of s and b.

5. Gaussian or Poissonian Statistics: Assumption 5

In the above, the only respect in which it has been as-
sumed that Gaussian statistics are applicable is in
characterizing the signal-to-noise ratio and the signif-
icance of detection in terms of a standard deviation
calculated as the root of the sum of the variances
[Eq. (4) or its equivalents in other cases]. If both CS
and CB are small this is a slight simplification as
the distribution of Ŝ will not be strictly Gaussian
(or Poissonian). The resulting effects are tiny except
where only a very few events in total are involved. A
potentially relevant case arises in the detection of a
very brief burst—one occurring in so short a time that
the background is very small. In this case the signifi-
cance of detection should ideally be expressed in
terms of likelihood. Often in these circumstances
the background rate (and even its distribution over
the detector) will be well determined by considering
data before, and perhaps after, the burst. However,
to place the problem in the same context as the above
discussion we consider the case where there is no in-
formation available outside the time of the event it-
self. For the same reason we will consider the
significance of detection at a given position without
considering the degrees of freedom associated with
finding the location of the event.

If we observe counts CS and CB in the exposed and
shadowed parts of the detector [54], the difference in
the Cash likelihood statistic [55] between the null
(background only) hypothesis and the hypothesis
in which a source is present at the supposed position
is found to be

δC
2

¼ CS ln
"
CS

f

#
þ CB ln

"
CB

1 − f

#

− ðCS þ CBÞ lnðCS þ CBÞ ð21Þ

ðassumptions 4; 6; 8; 9Þ:

Figure 3 shows, for two examples of f , the combina-
tions of numbers of events that give particular levels
of confidence in the detection of a source, calculated
according to Eq. (21). For comparison the correspond-
ing contours can be calculated on the Gaussian as-
sumption by evaluating the χ2 parameter

δχ2 ¼ ðCS − f ðCS þ CBÞÞ2

f ðCS þ CBÞ
þ ðCB − ð1 − f ÞðCS þ CBÞÞ2

ð1 − f ÞðCS þ CBÞ

¼ ðCS − f ðCS þ CBÞÞ2

f ð1 − f ÞðCS þ CBÞ
ð22Þ

ðassumptions 4−6; 8; 9Þ:

In fact, δχ2 in Eq. (22) is just the square of Ŝ=σi
from Eq. (13).

Contours of constant χ2, calculated according to
Eq. (22), are also shown in Fig. 3. As the two statis-
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tics both follow the χ2ð1Þ distribution, a direct com-
parison can be made. It can be seen that there is re-
latively little difference between the two except in
extreme cases where the total number of events in
the background region number of events is quite
low. The Gaussian assumption can still be good even
if the number of events per detector element is small
(even ≪ 1), provided the total number of background
events,CB, is more than a dozen or so. For this reason
assumption 5 is almost always valid.

6. Finite Detector Resolution: Assumption 6

There remains the assumption that the detector has
perfect spatial resolution. Unfortunately, relaxing
this assumption has a major impact. The situation
is simplest if we again assumebackgrounddominated
conditions (assumption 3).We consider this case first.

A. Background Dominated Case

The case where the mask shadow is recorded by a de-
tector with limited spatial resolution and where
Bf ;t ≫ S is consideredbySkinner [8]. It is shown there
that in this case the sensitivity relative to that of a
reference system with f ¼ 1

2 [Eq. (8)] is given by the
coding power Δ so that

"
S
σS

#
¼ Δ

"
S
σS

#

ref
¼ ΔS

2

ffiffiffiffiffiffiffiffi
A
Bf ;t

s

; ð23Þ

where

Δ2

4
¼ 1

n

X

i

P2
i '

"
1
n

X

i

Pi

#
2

ð24Þ

ðassumptions 3; 5; 8; 9Þ;

andwherePi is the response in detector element i to a
source at the position under consideration, relative to
that for a fully exposed element to the same source (so
that 0 < Pi < 1). Assumption 4 is not needed as t0 and
t1 can be taken into account in calculating the Pi.
Equation (24) shows that Δ is simply twice the rms
value of Pi. It can be quite different even for two close
directions as the shadows of the edges of mask ele-
mentsmay fall differently with respect to the detector
elements. If there is a large number of detector ele-
ments and their pitch is not commensurate with that
of the mask elements then all relative phases of the
two arrays will occur with about the same frequency
andany such variationswill be small. If there is a sim-
ple ratio between thepitches, thenanaverage value of
Δ may be used as a measure of the mean sensitivity,
averaged over different skydirections (different shifts
of the mask shadow), i.e., we invoke assumption 8.

The concept of coding power is a very useful one. It
canbeused toderiveEq. (7),which is the limiting form
of Eq. (6) when Bf ;t ≫ S, or the corresponding form of
Eq. (18) orEq. (19) in the same limit. But it also allows
quantitative treatment of the loss in sensitivity due to
finite detector resolution in any background limited
case. A detector with limited spatial resolution re-
cords only a blurred version of the shadow of the
mask, as illustrated in Fig. 1 and the rms deviation
of P is consequently reduced. This approach was used
in [8] to obtain an expression for the sensitivity of a
telescope having square elements of side m and a
50%open fractionwhen thedetectorhas squarepixels
of finite size d. Generalizing the result obtained there
to allow for masks with any open fraction and with
imperfect transmission and opacity, one finds that
the sensitivity must be multiplied by a coding power
factor

Δ ¼
"
1' d

3m

#
ðt1 ' t0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4f ð1' f Þ

p
if m ≥ d

¼ m
d

"
1' m

3d

#
ðt1 ' t0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4f ð1' f Þ

p
if m ≤ d ð25Þ

ðassumptions 3; 5; 8; 9Þ:

Analytic solutions in even more general cases are
messy and not very revealing, but numerical calcula-
tion ofΔ allows the sensitivity of a proposed or actual
system to be estimated. As an example, we take the
case shown in Fig. 1, which is relevant to the EXIST
project. The shadowof amaskwith square elements of
sidem supported by a grid structure with bar width g
is imagined to be recorded using a detector having

Fig. 3. Numbers of events needed in the region of the detector
plane that are exposed to the source (CS) and that shadowed by
the mask (CB) needed to achieve a given level of detection signifi-
cance. The dashed and continuous curves are calculated using the
Cash statistic [Eq. (21)] which correctly handles Poisson statistics
and are for f ¼ 0:4 and f ¼ 0:6. respectively. Dotted curves are
based on δχ2 [Eq. (22)] and so use the approximation of Gaussian
statistics. The curves for each family are at levels of 17.3, 26.3,
37.4, and 50.4 (left to right), which for both the Cash statistic
and χ2 correspond to 4σ, 5σ, 6σ, and 7σ, respectively, for 1 degree
of freedom (appropriate if the source position is known).
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square pixels of side d. The variation of P along one
particular line is illustrated in the case g < d < m.
The calculation can be simplified by noting that the

mask pattern can be described as the convolution of a
single mask hole, side m, with a sparse bed-of-nails
function (or two-dimensional Shah function [56]),
pitchp ¼ mþ g, inwhichonlyafraction f e ofthespikes
arepresent. The response function is thenobtainedby
a further convolution with the form of a detector ele-
ment.Use of the convolution theoremallows theFour-
ier transform of the response to be obtained and
Parseval’s theorem then gives its mean square value.
Example results are shown in Fig. 4.When the sup-

porting grid is present there is an important loss in
sensitivity unless the detector pixels are very small.
In effect, the loss is due to an increased fraction of in-
termediate gray levels because the shadow of the fine
grid is poorly resolved.
In real conditions the shadow of the mask cast by

an off-axis source may not simply be a translation of
that for an on-axis source. The finite thickness of the
mask elements and/or that of a supporting grid, or
the partial transparency of the structure, may mod-
ify the off-axis response. Grindlay and Hong [45]
have discussed approaches to some of the problems
associated with such complications.

B. Finite Detector Resolution: Background Not Dominant

The approach used in [8] and Subsection 6.A for de-
riving the expression for the sensitivity considers the
problem as equivalent to finding the gradient of the
best-fit straight line in a data space relating the ob-
served counts in a detector pixel, Ci, to the corre-
sponding Pi. In the case treated there Bf ;t ≫ S so

the errors on each point are the same. In the general
case the number of counts expected in detector pixel i
of surface area a is [57]

Ci ¼ aðBf ;t þ PiSÞ (
ffiffiffiffiffi
Ci

p
; ð26Þ

and the best estimate of S can be found as the gra-
dient of the straight line that is a weighted best fit to
the points ðCi;PiÞ. The uncertainty in the gradient is
given by

σ2S ¼ 2
Δw

"X 1
Ci

#'1
; ð27Þ

where Δw is simply the weighted equivalent of Δ:
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#
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"X 1
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#%
2

ðassumptions 5; 7−9Þ:

C. Optimum Open Fraction with Finite Detector
Resolution

In ’t Zand et al. [51] havenotedhow imperfect detector
spatial resolution tends to decrease the optimum
open fraction. For the case they discussed, that of
the Beppo-SAX wide-field cameras, they concluded
that f in the range of 0.25–0.33 was the best choice.
However, this conclusionwasmore due to the fact that
the fields simulated contain several sources whose
flux led to a high b than to the effects of the detector
resolution.

The shift of f opt to lower values due to imperfect de-
tector resolution can nevertheless be important when
studying a single strong source. The arrows in Fig. 2
illustrate the effect with m=d ¼ 2 (shorter arrows)
and with d ¼ m (a case discussed in Section 7).

D. Poisson Statistics and Finite Detector Resolution

Finally, if the detector resolution is finite and the
number of events is so small that Poisson statistics
must be used, the source flux can be obtained by op-
timizing the Cash likelihood statistic

C
2
¼ '

X
Ci lnðPiSþ Bf ;tÞ; ð28Þ

and the confidence limits obtained by finding the S
for which C changes by the required amount (with
Bf ;t refitted). For calculating the confidence with
which the null (background only) hypothesis can
be rejected one can calculate

δC
2

¼ '
X

Ci lnðPiSþ Bf ;tÞ þ 2nCi lnðCiÞ ð29Þ

ðonly assumptions 7−9necessaryÞ;

Fig. 4. Loss in sensitivity if the detector spatial resolution is not
perfect. The solid curve (a) is for a simple mask with square ele-
ments having open fraction f ¼ 0:5 and a detector with square pix-
els [Eq. (24)]. The dotted curve (b) shows the corresponding curve
with f ¼ 0:4. The dashed curve (c) is for a mask in which 50% of the
elements are open but in which a supporting grid like that in Fig. 1
reduces the transparency to f ¼ 0:4. If the detector resolution is
good (lowd=p) the grid provides coding and so the curve approaches
(b). If the detector resolution is poor, the grid simply attenuates the
flux and reduces the sensitivity (assumptions 3–5, 8, and 9).
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n being the number of detector pixels. Thus, although
no useful explicit formulas are available in this case,
use of this statistic provides a method for dealing
with any particular example.

7. Optimizing Source Position Determination
Accuracy

For a givenmask to detector separation, dictated per-
haps by spacecraft accommodation considerations
and/or a minimum required field of view, the angular
resolution of a coded mask telescope depends on the
mask pixel size and also on that of the detector. Prac-
tical issues usually limit how small the pixels of a
detector may be made, while the mask design is
usually less subject to constraints. If we suppose
the detector pixel size to be fixed, the angular resolu-
tion will formally continue to improve as the mask
pixels are made smaller and smaller but, as was seen
above, with low m=d the significance with which
sources are detected will suffer.
Simulations confirm that a good approximation to

the angular resolution is obtained by taking the
Pythagorean sum of the angle subtended by a mask
pixel at the detector and that subtended by a detector
pixel at the mask. Near the center of the field of view

δθ2 ¼ ðm=lÞ2 þ ðd=lÞ2; ð30Þ

where l is themask–detector separation. Note that in
a case such as that illustrated in Fig. 1 it is the size of
the holes (m) that is important, not their pitch.
The accuracy with which a source can be located is

better than this by a factor approximately propor-
tional to the signal-to-noise ratio S=σS of the source
[58] so

δα ¼
"σS
S

#
k½ðm=lÞ2 þ ðd=lÞ&

1
2

¼ Δ
"σS
S

#

d¼0
k½ðm=lÞ2 þ ðd=lÞ&

1
2; ð31Þ

where k is a constant of the order of unity that de-
pends on the exact definition of location accuracy.
Substituting Δ from Eq. (25) one finds that, on the
assumptions under which these equations apply (3,
5, 8, and 9), the lowest position uncertainty is ob-
tained with m ¼ d. This is illustrated in Fig. 5.
In thedesignof an instrument thenumberof objects

detectable is likely to also be a consideration. As the
minimum is relatively shallow, choosing a slightly
higherm=dwill allowadditional faint sources tobede-
tectedat the expense of only a small loss inpositioning
accuracy for brighter ones. The BAT instrument on
Swift uses 5=4; a value of 2=1 is baselined for EXIST.

8. Conclusions

The formulas presented above offer insight into the
way in which the inevitable uncertainties due to
Poisson statistics affect measurements with coded
mask telescopes. In some cases the differences be-
tween a simplified treatment and the more precise

one can be quite large. For example, with the choice
ofm=d ¼ 1, shown in Section 7 to give the best source
location accuracy, the sensitivity is worse by a factor
of 2=3 than that which would be expected by blind
application of a simplified formula. Often in astron-
omy the number of objects observed depends on the
'3=2 power of the detection threshold, so use of the
simplified approach would lead to an overestimate of
that number by a factor of 1.8.

Although the discussion here has been in terms of
measuring the flux from a particular direction, for
example, that from a point source, in many cases
the results can be applied to extended sources by con-
sidering the flux per angular resolution element from
the source.

It should be noted that systematic errors due to
(uncorrected) variations in the background level
across the detector plane have not been considered
nor have been those due to ghosts (sidelobes) of other
sources. Thus, the results are most directly applic-
able in the case of short observations of relatively
bright sources (e.g., gamma-ray bursts) or where
the design or observation strategy is such as to mini-
mize such errors (e.g., through use of scanning, com-
bined with a very large number of detector pixels, as
in the proposed EXIST black hole finder mission).

The author thanks Roberto Accorsi, David Band,
Jean in ’t Zand, Ed Fenimore, and Craig Markwardt
for helpful discussions.
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