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Abstract. Uniformly Redundant Arrays (URA’s) are two–dimensional binary arrays with constant
sidelobes of their periodic autocorrelation function. They are widely agreed upon to be optimum
mask patterns for coded aperture imaging, particularly in imaging systems with a cyclic coded mask.
In this paper, a survey of all currently known construction methods for URA’s is given and the sizes
and open fractions of the arrays resulting from each construction method are pointed out. Alternatives
to URA’s for situations in which a URA does not exist, are discussed.
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1. Introduction

Coded aperture imaging (CAI) (Mertz and Young, 1961; Dicke, 1968) has matured
as a standard imaging technique in X–ray andγ–ray astronomy. It is capable of
combining high angular resolution with good photon collection efficiency by using
a mask consisting of transparent and opaque elements placed in front of a position
sensitive detector (Figure 1). With a suitable choice of the aperture pattern it is
possible to reconstruct the source distribution to be imaged from the coded detector
image and to obtain a better signal–to–noise ratio in the presence of quantum noise
and detector background noise than with a single pinhole aperture.

An important type of coded aperture imaging instruments are cyclic systems as
the one depicted in Figure 1 (Gunson and Polychronopulos, 1976; Fenimore and
Cannon, 1978). LetNx andNy denote the number of detector pixels inx– and
y–direction, respectively. Then the coded mask is of size 2Nx × 2Ny and consists
of a 2× 2 mosaic of a basic pattern of sizeNx × Ny . Using a suitable collimator,
it is ensured that only a field of view ofNx × Ny sky pixels can contribute to the
recorded detector image. A source at each sky pixel within the field of view casts
a shadow onto the detector which is a cyclically shifted version of the basic mask
pattern. The detector image can then be shown to be the periodic crosscorrelation
of the source distribution with the aperture array∗.
∗ The aperture array is an array of sizeNx × Ny that is obtained by assigning a 1 to each

transparent, and a 0 to each opaque element of one basic pattern of the coded mask.
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Figure 1.Cyclic coded aperture imaging system.

From among the various algorithms proposed in the literature for reconstruct-
ing the original source distribution from the coded detector image, we will only
mention two here:
1. For matched filtering, reconstruction is achieved by periodically crosscorre-

lating the detector image with the aperture array itself, possibly scaled by a
constant factor and offset by a constant value. Matched filtering can be shown
to be optimum with respect to the contribution of quantum noise in the detector
measurements to the reconstruction. However, the point spread function (PSF)
of the resulting imaging system is the periodic autocorrelation function of
the aperture array. Unless this autocorrelation function has constant sidelobe
values, the reconstruction will be subject to systematic errors, often referred to
ascoding noiseor artifacts.

2. For inverse or mismatched filtering, the detector image is crosscorrelated
with the periodic inverse filter of the aperture array (Antweiler and Lüke,
1994; Lüke and Busboom, 1998). In this case, the reconstruction will be free
of coding noise for arbitrary aperture arrays, however, amplification of the
quantum noise will occur and have a deteriorating effect on the reconstructed
image.

Matched and mismatched filtering become identical, except for a constant scal-
ing and offset, if and only if the periodic autocorrelation function of the aperture
array has constant sidelobes. Arrays with this property are commonly referred to
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asUniformly Redundant Arrays (URA’s). This term was originally introduced by
Fenimore and Cannon (1978) for a particular type of binary arrays with flat periodic
autocorrelation sidelobes. Today, however, it is commonly used as a generic term
for all binary arrays with this property. URA’s are widely agreed upon (Gunson and
Polychronopulos, 1976; Fenimore and Cannon, 1978; Skinner, 1984; Busboom et
al., 1997b) as being the optimum aperture arrays, at least for cyclic CAI systems,
since they combine the advantages of matched filtering (avoidance of quantum
noise amplification) and mismatched filter reconstruction (avoidance of systematic
coding noise). URA’s are also frequently employed as aperture arrays in non–cyclic
CAI instruments (Rideout, 1995) even though they are not strictly known to be
optimum in any sense in this kind of systems.

An important parameter in the choice of a suitable aperture array is the number
of transparent aperture elements or, equivalently, the ratioρ of open elements to the
total number of aperture elements, calledaperture transmission, aperture density,
or open fraction.In the literature, there has been a multitude of approaches to
the optimization of the open fraction that used different optimization criteria and
obtained slightly different results. Gunson and Polychronopulos (1976) optimize
the statistical significance of a peak above a constant plateau of background noise.
The result is an optimum value forρ near zero for low background noise and
an optimum open fraction near 1/2 in the background dominant case. Fenimore
(1978) maximizes the local signal–to–noise ratio for an individual pixel in the
reconstruction. He obtains an open fraction of 1/2 for high detector background
noise and/or strong point sources. For low detector noise and weak or extended
sources, Fenimore obtains a lower value for the optimum open fraction but argues
that the loss in signal–to–noise ratio is small when a mask with 1/2 transmission is
used nonetheless. A similar approach was taken by Skinner (1984; 1995), however,
results differ slightly in that Skinner’s optimum open fraction tends toward 1 for
low detector background or weak local sources. In ’t Zand et al. (1994) refine the
analysis by taking into account the non–ideal point spread function of the position
sensitive detector. The authors demonstrate that for a finite detector resolution the
optimumρ is lower than that predicted for an ideal detector. For a background
dominated situation, they suggest to use a coded mask transmission of 1/3.

The second important parameter in the aperture design is of course the aperture
sizeNx × Ny . The choice will usually be governed by technical constraints with
respect to the size and resolution of the available detector and by the desired size
and resolution of the field of view to be imaged. In many instruments, circular
detectors are employed such that square or almost square apertures make the best
use of the available detector area. There are, however, situations in which strongly
off–square detectors and coded masks are favorable (Rideout, 1995).

In summary, it is desirable in the context of cyclic coded aperture imaging
to have a broad choice of Uniformly Redundant Arrays with a variety of sizes,
aspect ratios, and open fractions available. Most CAI systems described in the
literature make use of a very limited number of families of URA’s only while
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a number of construction methods, some of which have been discovered rather
recently, seem not to be widely known in the astronomy community. Also, there
have been instances where non–optimum arrays were proposed as aperture arrays
even though URA’s would have existed for the situations described. It is therefore
the purpose of this paper to provide a survey of all currently known construction
methods for URA’s. Emphasis will be put on the sizes and open fractions of the
URA’s generated by each construction method.

The remainder of this paper is organized as follows: In Section 2, some impor-
tant definitions and results from signal theory, finite algebra and design theory are
reviewed. As the major theorem of this section we point out an equivalence be-
tween URA’s and difference sets in abelian, not necessarily cyclic, groups. Section
3 is the main part of this paper, describing the construction methods for URA’s
in detail. In Section 4 we present invariance operations that allow to generate new
URA’s of the same size and open fraction from a given URA. This may be desirable
for applications in non–cyclic CAI systems since the arrays generated by these
invariance operations will vary in their aperiodic autocorrelation properties. Some
alternatives to URA’s for sizes and/or open fractions for which a URA does not
exist or is not known, are discussed in Section 5. Finally, Section 6 comprises an
overview of all known URA’s up to size 100× 100 and some concluding remarks.

2. Definitions and Basic Facts

2.1. DEFINITIONS

This paper is mainly concerned with two–dimensional arraysa(x, y); x =
0, 1, . . ., Nx − 1; y = 0, 1, . . ., Ny − 1. An arraya will be called aco-
herentbinary array ifa(x, y) ∈ {−1, + 1}, and anincoherentbinary array if
a(x, y) ∈ {0, 1} for all x andy.

With the 0’s and 1’s corresponding to opaque and transparent aperture elements,
respectively, obviously only incoherent binary arrays can be physically realized as
coded masks. If not otherwise stated, the arraya is assumed to be an incoherent
binary array in the following. The number of 1’s ina is denoted byK. With the
definitionN = NxNy the open fraction ofa is given byρ = K/N .

The periodic autocorrelation function (PACF) ofa is defined as (Lüke, 1992)

ϕ̃aa(l, k) =
Nx−1∑
x=0

Ny−1∑
y=0

a(x, y) a(x + l modNx, y + k modNy). (1)

The values ofϕ̃aa for (l, k) 6= (0, 0) are referred to as thePACF sidelobesof
a. This definition generalizes to one– or to more than two–dimensional arrays in
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UNIFORMLY REDUNDANT ARRAYS 101

a straightforward manner. As mentioned above, we will use the term Uniformly
Redundant Array (URA) for any incoherent binary arraya with

ϕ̃aa(l, k) =
{
K if (l, k) = (0, 0),
λ otherwise

(2)

which is a more general concept than the original definition by Fenimore and
Cannon (1978). Obviously, ifa is a URA, then the arraya′ given bya′(x, y) =
1− a(x, y) for all x, y also is a URA with open fractionρ ′ = 1− ρ. We will
therefore restrict this paper to URA’s withρ ≤ 1/2, bearing in mind that URA’s
with ρ > 1/2 do exist. Also any incoherent binary array withK = 1 orK = N−1
trivially is a URA corresponding to a pinhole or “inverse pinhole” aperture. These
arrays with not be considered in this paper, either.

2.2. NECESSARYEXISTENCE CRITERION

We will make no attempt here to review the abundance of nonexistence proofs
for URA’s or equivalently, as will be shown in Section 2.5, for difference sets in
abelian groups that has been given in the literature. For details the reader is referred
to Baumert (1971), Lander (1981), Beth et al. (1985), and the references therein.
We will only mention the most important necessary existence criterion that allows
to significantly constrain the number of possible URA sizes and open fractions
with very little effort.

It can be easily verified that the relation

Nx−1∑
l=0

Ny−1∑
k=0

ϕ̃aa(l, k) =
Nx−1∑
x=0

Ny−1∑
y=0

a(x, y)

2

holds for any arraya. For URA’s it follows from Equation (2) that

K + λ(N − 1) = K2, i. e., λ = K(K − 1)

N − 1
. (3)

Sincea is a binary array, the PACF sidelobe levelλ must be an integer. Thus, the
most basic feasibility test for the existence of a URA with givenN andK is to
verify thatK(K − 1) is a multiple ofN − 1.

2.3. FOLDING AND REFOLDING

Let s be a one–dimensional sequence of lengthN with PACF ϕ̃ss (l, k), and let
N = NxNy whereNx andNy are coprime. Then the arraya given by

a(n modNx, nmodNy) = s(n) for all n = 0, 1, . . ., N (4)

has the periodic autocorrelation function (Lüke, 1992)

ϕ̃aa(m modNx, m modNy) = ϕ̃ss(m) for all m = 0, 1, . . ., N. (5)
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The construction of an array from a sequence according to Equation (4) is referred
to asfolding, its inverse, the construction of a sequence from an array is calledre-
folding. Since with Equation (5) the PACF’s of the sequence and array are related to
each other via folding or refolding in the same manner, any one–dimensional URA
gives rise to a two–dimensional URA and vice versa, as long as the dimensionsNx
andNy of the two–dimensional array are coprime. Folding and refolding can also
be generalized to higher–dimensional arrays in a straightforward manner.

2.4. BASIC FACTS FROM FINITE ALGEBRA AND DESIGN THEORY

The purpose of this section is to review only those results from the theory of finite
abelian groups and finite fields that will be needed in Section 3 to describe the
construction methods for URA’s. All theorems will be stated without proof. For
details, the reader is referred, e. g., to Baumslag and Chandler (1979) for the theory
of finite groups and Lidl and Niederreiter (1983) for the theory of finite fields.

2.4.1. Finite Abelian Groups
DEFINITION 2.1. (Baumslag and Chandler, 1979) Agroup is an ordered pair
(G, +) of a nonempty setG and a binary operation∗ + in G if
1. the operation+ is associative, i. e.,

a + (b+ c) = (a + b)+ c for all a, b, c ∈ G,
2. there exists a zero elemente ∈ G such that

a + e = e + a = a for all a ∈ G,
3. there exists an inverse element−a for eacha ∈ G such that

a + (−a) = (−a)+ a = e.
If, in addition, the operation+ is commutative, i. e.,a + b = b + a holds for all
a, b ∈ G, then(G, +) is called anabelian group. The number|G| of elements of
G is called theorder of the group.(G, +) is called afinite groupif |G| is finite.

DEFINITION 2.2. A group(G, +) of ordern is calledcyclic if there exists an
elementa ∈ G such that eachb ∈ G can be expressed as

b = ma = a + a + . . .+ a︸ ︷︷ ︸
m terms

, m ∈ {0, 1, . . ., n− 1}.

Note that the zero element is formally written as 0a. a is called agenerating
elementof (G, +).
DEFINITION 2.3. Two groups(G, +), (H, ?) are calledisomorphicif there is a
bijectionf : G→ H such that

f (a + b) = f (a) ? f (b) for all a, b ∈ G.
∗ Note that this operation formally denoted as + does not need to be identical with the standard

addition operation
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UNIFORMLY REDUNDANT ARRAYS 103

If two groups of the ordersn andm are given, then the following theorem allows
to construct a new group of ordernm, thedirect sumof the given groups:

THEOREM 2.1. Let(G, +) and(H, ?) be two groups. LetG × H denote the
Cartesian product ofG andH , i. e.,

G×H = {(g, h) | g ∈ G, h ∈ H }.
Define the binary operation· in G×H by

(g1, h1) · (g2, h2) = (g1+ g2, h1 ? h2).

Then(G×H, · ) is a group of order|G| |H |. It is called thedirect sumof (G, +)
and(H, ?) and denoted as(G, +) ⊕ (H, ?). If (G, +) and(H, ?) are abelian,
then their direct sum is also abelian.

The following theorems describe the structure of abelian groups and allow a
very general classification:

THEOREM 2.2. Any cyclic group is abelian.

THEOREM 2.3. Cyclic groups exist for all orders|G| = 1, 2, . . ..

THEOREM 2.4. Any two cyclic groups of the same order are isomorphic. For
this reason we will also use the termthe cyclic group of ordern in the following,
denoted byC(n).

THEOREM 2.5. The direct sumC(n)⊕C(m) of the cyclic groups of ordern and
m is cyclic if and only ifn andm are coprime.

THEOREM 2.6. Any finite abelian group is isomorphic to the direct sum of a
finite number of cyclic groups whose orders are prime powers.

With this theorem, any finite abelian group(G, +) can be represented as

(G, +) = C(pr11 )⊕ C(pr22 )⊕ . . .⊕ C(prww )
where thepi are prime numbers andri = 1, 2, . . .. If the pi are ordered such
thatp1 ≤ p2 ≤ . . . ≤ pw andri ≥ ri+1 if pi = pi+1, then the orderedw–tupel
(p

r1
1 , p

r2
2 , . . ., p

rw
w ) is called thetypeof the group(G, +). Note that the type

uniquely determines the structure of any finite abelian group which is reflected by
the following theorem:

THEOREM 2.7. Two finite abelian groups are isomorphic if and only if they are
of the same type.
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A special case are finite abelian groups that are the direct sum of cyclic groups
whose orders are prime numbers, i. e.,r1 = r2 = . . . = rw = 1. A finite abelian
group of ordern with this property is called theelementary abelian group of order
n.

2.4.2. Finite Fields
DEFINITION 2.4. (Lidl and Niederreiter, 1983) Afield is an ordered triplet
(F, +, · ) of a nonempty setF and two binary operations∗ + and· in F if
1. (F, +) is an abelian group with zero element 0,
2. (F \ {0}, ·) is an abelian group
3. the distributive law holds, i. e.,

a · (b + c) = a · b+ a · c for all a, b, c ∈ F.
(F, +, · ) is called afinite fieldif |F | is finite.

DEFINITION 2.5. Two fields(F, +, · ), (K, ?, ◦) are calledisomorphicif there
is a bijectionf : F → K such that

f (a + b) = f (a) ? f (b) and f (a · b) = f (a) ◦ f (b) for all a, b ∈ F.
The two following theorems contain important results on the existence and
uniqueness of finite fields:

THEOREM 2.8. A finite field withq elements exists if and only ifq is a prime
power.

THEOREM 2.9. Any two finite fields with the same numberq of elements are
isomorphic.

The finite field withq elements is commonly referred to as theGalois field
GF(q). For each prime numberp the set of integers{0, 1, . . ., p − 1} together
with addition and multiplication modulop form a finite field, the so–calledfield
of residue classes modulop. Due to the uniqueness Theorem 2.9, it is possible to
identify the Galois field GF(p) with this field of residue classes modulop.

The next two theorems describe the structure of the multiplicative and additive
group of a finite field:

THEOREM 2.10. The multiplicative group(F \{0}, ·) of a finite field(F, +, ·)
is cyclic.

THEOREM 2.11. Let(F, +, · ) be a finite field withq = pw elements,p prime.
Then the additive group(F, +) is isomorphic to the elementary abelian group of
orderq, i. e., to the groupC(p)⊕ C(p)⊕ . . .⊕ C(p)︸ ︷︷ ︸

w terms

.

∗ Again, note that+ and · do not need to refer to the standard addition and multiplication
operations.
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UNIFORMLY REDUNDANT ARRAYS 105

DEFINITION 2.6. A generating elementµ of the multiplicative group(F \{0}, ·)
of a finite field(F, +, · ) is called aprimitive element of the field.

It follows immediately that each element of GF(q) can be uniquely represented
asµj = µ · µ · . . . · µ︸ ︷︷ ︸

j factors

, j ∈ {1, . . ., q − 2} where the zero element 0 of the

operation+ is formally denoted asµ−∞ and the neutral element of the operation·
is written asµ0.

DEFINITION 2.7. Let(F, +, · ) be a finite field and letK ⊂ F be a subset of
F . If (K, +, · ) is a field, then it is called asubfieldof (F, +, · ). (F, +, · ) is
called anextension fieldof (K, +, · ).
THEOREM 2.12. Let GF(pn) be the Galois field withpn elements,p prime. Then
any subfield of GF(pn) haspm elements wherem is a divisor ofn. For each positive
divisorm of n there is exactly one subfield GF(pm) of GF(pn) with pm elements.

While any finite field GF(p) whose number of elements is prime, can be
represented as the set of integers{0, 1, . . ., p−1} together with addition and mul-
tiplication modulop, each element of a field GF(pw) whose number of elements
is a prime power (p prime), can be formally written as a polynomial

w−1∑
i=0

niµ
i, ni ∈ GF(p) (6)

of degreew − 1 in a primitive elementµ of GF(pw). The two operations are the
polynomial addition and polynomial multiplication modulo someprimitive poly-
nomial. Primitive polynomials have been tabulated in the literature, e. g., by Lidl
and Niederreiter (1983) and Lüke (1992). They can be generated by search using
the property that is must be possible to represent each element of the extension
field, with the exception of the zero element, as a power of the primitive element
µ.

DEFINITION 2.8. Letq be a prime or a prime power. Consider the Galois field
GF(q) and the extension field GF(qw) (cf. Theorem 2.12). For eachα ∈ GF(qw),
the trace ofα overGF(q) is defined by

TrGF(qw)/GF(q)(α) = α + αq + . . .+ αqw−1
.

TrGF(qw)/GF(q)(α) is always an element of GF(q).
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2.5. EQUIVALENCE BETWEEN URA’ S AND ABELIAN DIFFERENCESETS

In this section we introduce the concept of a difference set in a finite group. Differ-
ence sets have been extensively studied in the combinatorics literature. Essentially,
a difference set is a subset of a group with the property that for each nonzero
element of the group there are exactlyλ ways of representing it as the difference
of two elements of the subset. It will be shown that if the underlying group is
abelian, a difference set is equivalent to a, generally multidimensional, Uniformly
Redundant Array. Therefore, many results from combinatorics give rise to con-
struction methods for URA’s. In fact, the majority of constructions reviewed in this
paper was originally published in the context of difference sets, the only exception
being the URA’s based on perfect binary arrays (Section 3.2). In the latter case the
construction methods were first formulated in the context of correlation arrays and
gave rise to a family of formerly unknown difference sets.

DEFINITION 2.9. (Beth et al., 1985) Let(G, +) be a finite group of orderν.
Furthermore, letD ⊂ G be a nonempty subset ofG with |D| = k. ThenD is
called a(ν, k, λ)–difference set in(G, +) if the list of differences∗ d1 − d2 6= 0,
d1, d2 ∈ D contains each nonzero element ofG exactlyλ times.

If (G, +) is abelian, thenD is called anabelian difference set.
If (G, +) is cyclic, thenD is called acyclic difference set.

An overview of cyclic difference sets was given by Baumert (1971). More recent
results as well as results on difference sets in non–cyclic groups can be found
in Lander (1981) and Beth et al. (1985). A summary of non–cyclic but abelian
difference sets was given by Kopilovich (1989).

THEOREM 2.13. Let(G, +) be a finite abelian group of type(q1, q2, . . ., qw)

where theqi are prime powers, and letD be a(ν, k, λ)–difference set in(G, +).
Then there exists aw–dimensional, incoherent binary arraya of sizeq1 × q2 ×
. . .× qw such that the PACF ofa is given by

ϕ̃aa(l1, l2, . . ., lw) =
{
k if l1 = l2 = . . . = lw = 0,
λ otherwise.

Proof. Let ai, i = 1, 2, . . ., w, denote the generating elements according to
Definition 2.2 of the cyclic groupsC(qi), respectively. Since(G, +) is the direct
sum of theC(qi), each elementg ∈ G can be represented as

g = (x1a1, x2a2, . . ., xwaw) , xi ∈ {0, 1, . . ., qi − 1}.
Now define the elements of the arraya by

a(x1, x2, . . ., xw) =
{

1 if (x1a1, x2a2, . . ., xwaw) ∈ D,
0 otherwise.

∗ Note thatd1−d2 is a shorthand notation ford1+ (−d2) with−d2 denoting the inverse element
of d2 in (G, +).
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Since the difference setD hask elements and each element ofa corresponds to
exactly one element ofG, exactlyk elements ofa equal one. From this, the main
peak of the PACF ofa can be immediately seen to be

ϕ̃aa(0, 0, . . ., 0) = k.
The sidelobes of the PACF are given by

ϕ̃aa(l1, l2, . . ., lw)

=
q1−1∑
x1=0

. . .

qw−1∑
xw=0

a(x1, x2, . . ., xw) a(x1+ l1, x2 + l2, . . ., xw + lw)

=
∑

(x1a1, x2a2, ..., xwaw)∈D
a(x1 + l1, x2+ l2, . . ., xw + lw). (7)

Note that the terms in this equation are equal to one if and only if

((x1+ l1)a1, (x2 + l2)a2, . . ., (xw + lw)aw) ∈ D,
i. e.,

(x1a1, x2a2, . . ., xwaw)+ (l1a1, l2a2, . . ., lwaw) ∈ D. (8)

Here(l1a1, l2a2, . . ., lwaw) ∈ G \ {0} is a constant, nonzero element ofG while
(x1a1, x2a2, . . ., xwaw) ∈ D takes on each value ofD exactly once. With Defin-
ition 2.9, the sum in Equation (8) then is an element ofD exactlyλ times and all
PACF sidelobes equalλ. �

With this result we are now able to exploit known families of abelian dif-
ference sets for the construction of Uniformly Redundant Arrays. Note that
two–dimensional URA’s correspond to difference sets in groups that are the direct
sum of two cyclic groups.

In Theorem 2.5 is was stated that the direct sum of two cyclic groupsC(n) and
C(m) is isomorphic toC(nm) if and only ifn andm are coprime. This is analogous
to the folding and refolding of arrays described in Section 2.3.

Example.If a difference set exists inC(15), then it corresponds to a one–
dimensional URA of length 15. SinceC(15) is isomorphic toC(3) ⊕ C(5),
there must also exist a difference set in the latter group, corresponding to a two–
dimensional URA of size 3× 5. Equivalently, the two–dimensional URA could be
obtained from the one–dimensional URA via folding.

Similar remarks apply to folding and refolding of higher–dimensional arrays
or, equivalently, isomorphisms of groups that are the direct sum of more than
two cyclic groups. Therefore, difference sets in abelian groups are useful for the
construction of two–dimensional URA’s as long as the groups they are constructed
in are isomorphic to a direct sum of two cyclic groups.
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3. Construction Methods for URA’s

3.1. SINGER URA’ S

The most important family of difference sets in cyclic groups is based on projective
geometries in finite fields (Singer, 1938). In the context of correlation sequences
and arrays, these Singer difference sets are equivalent to sequences derived from
maximum length shift–register sequences (MacWilliams and Sloane, 1976; Lüke,
1992). They can be described in a very compact way using the trace function.

Let q be a prime or prime power, and consider the Galois field GF(q) and the
extension field GF(qw), w = 2, 3, . . .. Let µ be a primitive element of GF(qw)
such that the nonzero elements of the extension field can be written asµn, n =
0, 1, . . ., qw − 2. Now we define the sequences of length(qw − 1)/(q − 1) by

s(n) =
{

1 if TrGF(qw)/GF(q)(µ
n) = 0 (zero element in GF(q)),

0 otherwise,

n = 0, 1, . . ., (qw − 1)/(q − 1)− 1. (9)

The sequences takes on the value 1

K = qw−1 − 1

q − 1

times, its PACF sidelobes are constant and, with Equation (3), are given by

λ = qw−2 − 1

q − 1
.

The sequences in Equation (9) can in many cases be folded into two–
dimensional arrays. A practically important case isq = 2,w even. The sequence
length 2w − 1 can then be factorized into(2w/2 − 1) × (2w/2 + 1). The resulting
array dimensions are always coprime such that folding is possible. Furthermore,
these arrays are nearly square, a property that is desirable if circular or square
detectors are to be employed.

The open fraction of URA’s based on Singer difference sets can be seen to be

ρ = qw−1 − 1

qw − 1

which is approximately 1/q for largew, i. e., for large arrays. This property allows
the construction of URA’s with a rather broad choice of open fractions. In partic-
ular, forq = 2 arrays with an open fraction of roughly 50% as required for many
applications (Fenimore, 1978) can be constructed. Also, forq = 3 URA’s with
ρ ≈ 1/3 result. Such arrays have been shown to be desirable in situations where
the detector resolution is in the order of magnitude of the mask element size (In ’t
Zand et al., 1994).
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3.2. PERFECTBINARY ARRAYS

Perfect binary arrays (PBA’s) are coherent binary arrays (i. e., arrays with±1
elements) whose PACF sidelobes are all zero. If a PBA is transformed into an
incoherent binary array by replacing the−1 elements by ones and the+1 elements
by zeros, or vice versa, the resulting incoherent array has constant, but obviously
nonzero, PACF sidelobes. Therefore, in the context of incoherent binary arrays,
PBA’s are in no respect more “perfect” than other arrays with flat PACF sidelobes,
but they do give rise to an important family of URA’s that was discovered only
several years ago.

It is easy to show that the number of elements of a PBA must be an even square
(Lüke, 1992). To date, all known two–dimensional PBA’s have aspect ratios of
1 : 1 or 1 : 4. The first PBA’s of size 2× 2 and 4× 4 were found by Calabro and
Wolf (1968). Abelian difference sets pertaining to PBA’s of size 6× 6, 3× 12, and
12× 12 were initially described by Spence (1976) and were interpreted as perfect
binary arrays by Chan et al. (1979). Further PBA’s of size 2× 8, 8× 8, 4× 16,
16× 16, 8×32, 6× 24, 24× 24, and 12× 48 were found by Lüke (1987), Jedwab
and Mitchell (1988), and Bömer and Antweiler (1990). Finally, Wild (1988) and
Jedwab and Mitchell (1990) found a recursive construction method for PBA’s of
the sizes 3s2r × 3s2r and 3s2r−1 × 3s2r+1, s = 0, 1; r = 1, 2, 3, . . . that
comprises all currently known two–dimensional PBA’s. This method is described
in the remainder of this section.

First, the concepts of quasiperiodic and doubly quasiperiodic autocorrelation
need to be introduced. Recall that the periodic autocorrelation function (Equation
(1)) of an array is computed by shifting the array over a periodically repeated mo-
saic of itself and by summing up the element–by–element products of the original
and shifted array (Figure 2, left). For the quasiperiodic and doubly quasiperiodic
autocorrelation functions, the signs of the periodic repetitions of the arrays need to
be modified as indicated in Figure 2 (middle and right). We call a coherent binary
array quasiperfect (doubly quasiperfect) if its quasiperiodic (doubly quasiperiodic)
autocorrelation function vanishes for all nonzero shifts.

Now the recursive construction method is given by the following three theo-
rems:

THEOREM 3.1. (Wild, 1988) Leta be a quasiperfect binary array (QPBA) of size
Nx ×Nx . Then the arrayb of sizeNx ×Nx , defined by

b(x, y) =
{
a(x + y, y) if 0 ≤ x + y < Nx,
−a(x + y modNx, y) if Nx ≤ x + y < 2Nx,

(10)

is a doubly quasiperfect binary array (DQPBA).
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Figure 2.Illustration of periodic, quasiperiodic, and doubly quasiperiodic autocorrelation.

THEOREM 3.2. (Jedwab and Mitchell, 1988) Leta be a PBA andb a QPBA, both
of sizeNx ×Nx . Then the arrayc of size 2Nx × 2Nx , defined by

c(x, y) =
 a(x modNx, y/2) if y even,
b(x, (y − 1)/2) if y odd and 0≤ x < Nx ,
−b(x modNx, (y − 1)/2) if y odd andNx ≤ x < 2Nx ,

(11)

is a PBA. Furthermore, the arrayd of size 4Nx ×Nx , defined by

d(x, y) =
 a(x/2 modNx, y) if x even,
b((x − 1)/2, y) if x odd and 0≤ x < 2Nx ,
−b((x − 1)/2 modNx, y) if x odd and 2Nx ≤ x < 4Nx ,

(12)

also is a PBA.

THEOREM 3.3. (Jedwab and Mitchell, 1988) Leta be a QPBA andb a DQPBA,
both of sizeNx ×Nx . Then the arrayc of size 2Nx × 2Nx , defined by

c(x, y) =
 a(x/2, y modNx) if x even,
b((x − 1)/2, y) if x odd and 0≤ y < Nx ,
−b((x − 1)/2, y modNx) if x odd andNx ≤ y < 2Nx ,

(13)

is a QPBA.

The PBA’s of size 2× 2 and 6× 6:

∣∣∣∣ + +
+ −

∣∣∣∣ and

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− + + + + −
+ − + + + −
+ + − + + −
+ + + − + −
+ + + − + −
+ + + + − −
− − − − − +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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together with the QPBA’s of the same sizes:

∣∣∣∣ + +
+ −

∣∣∣∣ and

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ − − + − +
− − − + − +
+ + − − + −
− − − − − +
− − − + + +
+ + + + − −
+ + + − + +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
serve as starting points for the recursive construction method. Assuming a PBA
and a QPBA of sizeNx ×Nx are known, the recursion consists of three steps:
1. Use Theorem 3.1 to construct a DQPBA of sizeNx×Nx from the given QPBA.
2. Use Theorem 3.2 to construct PBA’s of size 2Nx × 2Nx and 4Nx × Nx from

the given PBA and QPBA.
3. Use Theorem 3.3 to construct a QPBA of size 2Nx×2Nx from the given QPBA

and the DQPBA generated in step 1. Since now a PBA and a QPBA of size
2Nx × 2Nx are available, the preceding steps can be repeated withN ′x = 2Nx .

This recursion allows the construction of PBA’s of the sizes mentioned above,
with the two exceptions 4× 1 and 3× 12. These two missing PBA’s have the
structure:∣∣ + + + −

∣∣ and

∣∣∣∣∣ − + + − + + + + + − + −
+ + + + − + + − + − + −
+ + − − + + − − − − − +

∣∣∣∣∣ .
Since the total number of elements of a PBA always is an even square, it can

be written asN = 4l2. The incoherent URA’s pertaining to PBA’s then have the
parameters

K = l(2l − 1), λ = l(l − 1), ρ = 2l − 1

4l
.

For large array sizes, the open fractionρ can be seen to be approximately 50%.
This observation and the fact that many PBA’s with exactly square size exist makes
them ideal arrays for many coded aperture imaging applications. To the best of our
knowledge, however, PBA’s have not been practically employed as coded masks
yet.

3.3. QUADRATIC RESIDUE URA’ S

The termUniformly Redundant Arrayswas originally introduced by Fenimore and
Cannon (1978) for a family of nearly square binary arrays with flat PACF sidelobes
and an open fraction of approximately 50%. Their construction is based upon
quadratic residues in Galois fields and was first found by Calabro and Wolf (1968).
In this section, we describe a more general construction method that comprises the
original URA’s and some additional URA’s with approximately 50% transmission.
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Consider the Galois field GF(pw), p odd prime, with a primitive elementµ.
By definition, each nonzero elementα ∈ GF(pw) can be represented asα = µj ,
j ∈ {0, 1, . . ., pw − 2}. On the other hand, recall (Equation (6)) thatα may be
represented by

α =
w−1∑
i=0

xiµ
i, xi ∈ {0, 1, . . ., p − 1}.

Obviously, half of the nonzero elements of GF(pw) are squares, also called
quadratic residues, that can be written asµj with evenj . The other half pertains to
odd powers of the primitive element. Bömer et al. (1993) have constructed a family
of multi–dimensional, ternary arrays from the quadratic residues in GF(pw):

a(x1, x2, . . ., xw) =


0 if x1 = x2 = . . . = xw = 0,

+1 if
w−1∑
i=0

xiµ
i = µj , j even,

−1 if
w−1∑
i=0

xiµ
i = µj , j odd,

(14)

wherexi = 0, 1, . . ., p−1. Their periodic autocorrelation function can be shown
to be

ϕ̃aa(l1, l2, . . ., lw) =
{
pw − 1 if l1 = l2 = . . . = lw = 0,
−1 otherwise.

(15)

Forw = 1, Equation (14) yields the so–calledLegendre sequences(Lüke, 1992).
Let q1 = pw1

1 andq2 = pw2
2 be two powers of odd primes such thatq2 = q1+ 2

and leta1(x1, x2, . . ., xw1) anda2(y1, y2, . . ., yw2) be two quadratic residue
arrays according to Equation (14) of sizesp1×p1× . . .×p1 (w1 dimensions) and
p2 × p2 × . . . × p2 (w2 dimensions), respectively. For convenience, we combine
the indexesx1, x2, . . ., xw1 andy1, y2, . . ., yw2 to the vectorsx andy. A (w1 +
w2)–dimensional URAb can be constructed froma1 anda2 by

b(x, y) =


0 if x = 0,
1 if x 6= 0, y = 0,
0 if x 6= 0, y 6= 0, a1(x) a2(y) = +1,
1 if x 6= 0, y 6= 0, a1(x) a2(y) = −1.

(16)

This URA is characterized by

N = pw1
1 p

w2
2 , K = N − 1

2
, λ = N − 3

4
, ρ = N − 1

2N
,

its open fraction approaches 50% for largeN .
Two–dimensional URA’s can be obtained from Equation (16) in three different

ways:
1. If w1 = w2 = 1, thena1 anda2 are one–dimensional Legendre sequences and
b is a two–dimensional array of sizep1 × p2. These are the original URA’s
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according to Calabro and Wolf (1968) and Fenimore and Cannon (1978). This
family of URA’s is of particular importance for many coded aperture imaging
applications since they are nearly square.

2. Forw1 = 1 andw2 = 2,b is three–dimensional and has the sizep1×p2×p2.
By refolding, it can be transformed into a two–dimensional URA of sizep2×
p1p2, i. e.,p2× p2(p2− 2).

3. If w1 = 2 andw2 = 1, thenb has the sizep1 × p1 × p2. Again, a two–
dimensional URA of sizep1 × p1p2, i. e.,p1 × p1(p

2
1 + 2), can be obtained

by refolding. Note, however, that this case yields only a single array 3×33 for
q1 = 32 since for all largerq1, the numberq2 = q1+ 2 cannot be prime.

Note that construction methods 2. and 3. yield strongly off–square URA’s.

3.4. MCFARLAND URA’ S

McFarland (1973) described a family of difference set in non–cyclic, abelian
groups. Some of these difference sets give rise to two–dimensional URA’s: Let
p be an odd prime and consider the groupG = E ⊕K whereE = C(p)⊕ C(p)
andK is an abelian group of orderp+2. Note thatE is isomorphic to the additive
group of the two–dimensional vector spaceV over the fieldGF(p). In V there are

p2− 1

p − 1
= p + 1

different one–dimensional subspaces which we will denote asH1, H2, . . ., Hp+1.
Furthermore, choosep + 1 arbitrary but distinct elementski from K. Then a
difference setD in G is given by

D = {(hi, ki) | hi ∈ Hi, i = 1, 2, . . ., p + 1}. (17)

Since each subspaceHi hasp elements,D consists ofK = p(p + 1) elements.
With Equation (3), we getλ = p.

Two–dimensional URA’s can be obtained from these difference sets in two
cases:
1. LetK = C(p + 2) be the cyclic group of orderp + 2. ThenD pertains to a

three–dimensional URA of sizep× p× p+ 2. Sincep andp+ 2 are always
coprime for oddp, this URA can be refolded into a two–dimensional URA of
sizep × p(p + 2).

2. If p + 2 is not prime, i. e.,p + 2 = n1n2, n1 > 1, n2 > 1, wheren1, n2

need not be coprime, thenK may alternatively be chosen as the direct sum
K = C(n1) ⊕ C(n2). The corresponding URA then is four–dimensional and
of sizep× p × n1× n2. Sincep is prime and thus coprime to bothn1 andn2,
the array can be refolded to a two–dimensional URA of sizepn1 × pn2. The
case thatp+ 2 is a square, i. e.,n1 = n2 is of particular interest since it results
in square URA’s.
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Example.With p = 7, the choiceK = C(9) yields a URA of size 7× 63 while
withK = C(3)⊕C(3), a square URA of size 21× 21 can be constructed. Since 7
and 63 are not coprime, these URA’s are not equivalent in the sense that they may
be converted into each other via folding and refolding.

As can be seen in Figure 5, the number of URA’s that can be constructed by this
method, is rather sparse. The open fraction is

ρ = p + 1

p(p + 2)
.

For large arrays, it is of the order 1/p. Therefore, this construction method
is only suitable if URA’s with low open fractions are desired for a particular
application.

3.5. OTHER CONSTRUCTIONMETHODS

The construction methods described in the preceding sections comprise almost all
currently known two–dimensional URA’s. Some additional cyclic difference sets
exist that can be regarded as a generalization of quadratic residue arrays (Baumert,
1971). They yield URA’s with the parametersNy = 3Nx ± 2, k = (NxNy −
1)/4, λ = (NxNy − 5)/16 whose open fraction tends toward 1/4 with increasing
array size. These URA’s, however, are very rare. The two smallest arrays have the
parameters

Nx = 7, Ny = 19, K = 33, λ = 8, ρ = 24.81%

and

Nx = 17, Ny = 53, K = 225, λ = 56, ρ = 24.97%,

the next larger array hasNxNy = 6,575,588,101 elements.

4. Invariance Operations

In coded aperture imaging systems with non–cyclic masks, sometimes referred to
asbox cameras, theaperiodic autocorrelation function (ACF)rather than the PACF
is relevant for the imaging characteristics. The ACF of an arraya is defined by

ϕaa(l, k) =
∑
x

∑
y

a(x, y) a(x + l, y + k). (18)

“Aperiodic URA’s”, i. e., binary arrays with finite extent whose ACF sidelobes are
constant, can not exist. Since no mask patterns are known to date which possess
optimum imaging properties in some sense for non–cyclic CAI systems, URA’s are
frequently employed as coded apertures in such systems (Rideout, 1995).
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Several invariance operations are known that allow the construction of new
URA’s of the same size and open fraction from a given URA. We present three
invariance operations here that yield new URA’s with the same periodic, but with
different aperiodic autocorrelation functions. For the application in non–cyclic CAI
systems they allow to choose an aperture array whose ACF is preferable in some
sense, from a set of URA’s with identical PACF properties (Bömer and Antweiler,
1993).

4.1. CYCLIC SHIFT

Given an arraya of sizeNx ×Ny , the arraya′ is obtained by

a′(x, y) = a(x + u modNx, y + v modNy),

u = 0, 1, . . ., Nx − 1, v = 0, 1, . . ., Ny − 1. (19)

The arraysa anda′ then have identical periodic autocorrelation functions.

4.2. STAIRLIKE CYCLIC SHIFT

A stairlike cyclic shift of an arraya is given by

a′(x, y) = a(x + uy modNx, y + vx modNy) (20)

wherevNx ≡ 0 modNy anduNy ≡ 0 modNx must hold. In this case, the PACF
of a′ is obtained from the PACF ofa by a similar stairlike cyclic shift. Ifa is a
URA, thena′ also is a URA with the same PACF.

4.3. PROPERDECIMATION

Proper decimation is defined as

a′(x, y) = a(ux modNx, vy modNy) (21)

whereu andNx as well asv andNy must be coprime. The PACF ofa′ can be found
from the PACF ofa by an identical proper decimation. Again, ifa is a URA, then
a′ also is a URA.

5. Variations on the Theme

In the practical design of a coded aperture imaging system, the choice of the mask
dimensions and open fraction is typically governed by technical constraints and
the desired imaging properties. Constellations may result for which a Uniformly
Redundant Array does not exist or is not known. In this section, three possible
remedies for this situation are described. They lead to arrays that are not URA’s
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Figure 3.Cyclic and displaced–cyclic coded mask.

in the strict sense but that may have imaging properties close enough to those of
URA’s to be acceptable for practical purposes.

5.1. GENERALIZED FOLDING

In a strictly cyclic CAI system, the aperture mask consists of a 2× 2 mosaic of
a basic pattern (Figure 3, left). This requirement may be relaxed by allowing a
periodic displacement in the mask as shown in Figure 3 (right). The right half
of the cyclic mask is periodically shifted downward byD elements. With this
modification, folding of a sequence into an array can be generalized such that
is becomes possible even if the dimensionsNx, Ny of the array are not coprime
(Spann, 1965; Lüke and Busboom, 1997). The only constraint is, of course, that
the total number of array elements equals the sequence length. The displacement
has no negative effect on the imaging properties: The crosscorrelation of a single
basic array with the displaced 2× 2 mosaic has flat sidelobes granted that the
underlying sequence has constant PACF sidelobes.

The simplest implementation of this generalized folding procedure is obtained
with D = Ny − 1, i. e., a cyclic shift upward by one element. The arraya is then
obtained from a sequences by simply arranging the sequence elements along the
rows of the array:

a

(
nmodNx,

⌊
n

Nx

⌋
modNy

)
= s(n) for n = 0, 1, . . ., N. (22)

In the context of Uniformly Redundant Arrays, the generalized folding can be
used to transform the initially one–dimensional sequences constructed from Singer
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difference sets (Section 3.1) into two–dimensional aperture arrays without any
constraints regarding the array dimensions. This gives rise to arrays with some
additional sizes and open fractions for which URA’s in the strict sense do not exist.

Example.Consider the Singer difference set sequence obtained withq = 3,
w = 5. Its length is(qw − 1)/(q − 1) = 121. Folding according to Equation (4)
is not possible since the condition that the array dimensions be coprime cannot
be fulfilled. By generalized folding, however, an array of size 11× 11 can be
constructed:

a(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0 0 0 1
1 0 1 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 1 0 0
1 1 0 1 1 0 0 0 1 0 0
0 0 1 1 1 1 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 1
0 0 1 1 1 0 0 0 1 1 0
0 0 0 0 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0 1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

If the coded mask is designed with a cyclic displacement (D = 10), then the
resulting aperture has the same perfect imaging properties as a URA of the same
size and open fraction.

5.2. MODIFIED UNIFORMLY REDUNDANT ARRAYS (MURA’ S)

Gottesman and Fenimore (1989) have proposed a family of correlation arrays that
are frequently employed as coded apertures, the so–calledModified Uniformly
Redundant Arrays (MURA’s). This term is somewhat misleading since MURA’s
do not have constant PACF sidelobes and therefore do not strictly belong to the
class of Uniformly Redundant Arrays. Their correlation properties, however, are
very close to those of URA’s. Furthermore, the facts that MURA’s are square, that
they exist for many sizes (side lengths must be prime), and that they have an open
fraction of approximately 50% make them an interesting alternative to URA’s for
aperture sizes for which URA’s do not exist.

The construction of MURA’s is identical to that of the URA’s obtained from
quadratic residues (Equation (16)). For MURA’s,a1 anda2 in (16) must be one–
dimensional Legendre sequences, both of lengthq (odd prime). Thus, the condition
q2 = q1 + 2 that was required for URA’s, is violated in this case. The resulting
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arrays are square and haveN = q2 elements. They haveK = (N −1)/2 ones, and
their PACF is given by

ϕ̃aa(l, k) =


N−1

2 if (l, k) = (0, 0),
N−5

4 if (l, k) 6= (0, 0) anda(l, k) = 1,
N−1

4 if (l, k) 6= (0, 0) anda(l, k) = 0,

(23)

i. e., their periodic autocorrelation sidelobes take on two values that differ only by
one.

As mentioned in Section 1, the inverse filter of a URA with respect to the PACF
is identical to the URA itself. Therefore, decoding of the coded detector image is
performed by periodically correlating it with the aperture array. If, however, the
coded aperturea is a MURA, the detector image needs to be correlated with the
inverse filterg which is given by

g(x, y) =
{

1 if x = y = 0,
a(x, y) otherwise.

(24)

From this equation it can be seen that a MURA and its inverse filter differ only by
a single element.

Thus, MURA’s do not exactly share the optimum property of URA’s that the
aperture array and its inverse filter have the same structure. This property guaran-
tees that quantum noise in the reconstructed image is minimized while at the same
time systematic coding noise is avoided. The deviation of the inverse filter from
a MURA is, however, negligibly small, particularly for large array sizes. Since
URA’s with the same sizes and open fractions as MURA’s do not exist∗, it can be
conjectured that MURA’s are in fact optimum aperture arrays for the sizes for that
they exist.

5.3. HEXAGONAL UNIFORMLY REDUNDANT ARRAYS (HURA’ S)

All arrays presented so far were defined on a rectangular grid. It is, however,
also possible to use hexagonal lattices instead. The generalized folding procedure
described in Section 5.1 is also applicable to the mapping of one–dimensional se-
quences onto a hexagonal array in a straightforward manner. For certain sequence
lengths and folding parameters, one basic pattern of the resulting array then has
again a hexagonal shape. Note that a necessary condition for this property is that
N ≡ 1 mod 6 holds for the lengthN of the sequence to be folded. If circular
detectors are to be used for recording the coded images, hexagonal arrays use the
available detector area more efficiently than rectangular or even square arrays.

∗ The necessary existence condition from Section 2.2 is violated sinceλ = (q2− 3)/4. Note that
q is odd and can therefore be written asq = 2k+1 for some integerk. It follows thatλ = k2+k−1/2
can not be an integer.
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Finger and Prince (1985) explored the folding of quadratic residue sequences
with URA properties into hexagonal arrays. They point out that for certain folding
parameters, one obtains arrays with practically beneficial symmetry properties. The
termHexagonal Uniformly Redundant Arrays (HURA’s)was introduced by Finger
and Prince for these symmetric arrays with flat PACF sidelobes. Gottesman and
Fenimore (1989) extended the analysis to hexagonal arrays derived from one–
dimensional MURA’s instead of URA’s. Practical aspects of the implementation
of HURA’s in coded aperture imaging systems have been investigated by Cook et
al. (1984) and Goldwurm et al. (1990).

5.4. HEURISTIC SEARCH OFNEAR–OPTIMUM ARRAYS

If, due to technical considerations, a coded mask size and open fraction are required
for which no URA is known nor one of the remedies discussed in the previous
sections can be applied, then the only way of finding a reasonable aperture array
is by search. An exhaustive search, i. e., a search comprisingall binary arrays of a
given size and open fraction, would require investigating

(
N
K

)
possible arrays. This,

obviously, is not a reasonable option, even if the desired aperture size is moder-
ate, and even if additional symmetry properties are exploited. Therefore, heuristics
must be employed to drastically reduce the number of arrays to be searched through
in one way or another.

It turns out that the “flatness” of the PACF sidelobes is not a suitable criterion
for heuristic search algorithms since arrays that are “close” in the sense that they
differ only in few elements are not necessarily “close” with respect to their autocor-
relation behavior. On the other hand, the PACF sidelobes are not the most important
criterion for the imaging properties of an aperture array, either. If mismatched fil-
tering is used as a reconstruction technique, then the signal energy∗ of the inverse
filter is a measure of the capability of an aperture array to suppress quantum noise
in the reconstruction (Busboom et al., 1997a). Uniformly Redundant Arrays have
the property that they minimize this signal energy for a given aperture size and
open fraction. Using the inverse filter signal energy as an optimization criterion,
arrays can be found by heuristic search whose imaging properties are almost as
good as those of URA’s.

Suitable search strategies are the well–known Simulated Annealing algorithm
and variations thereof. These algorithms have in common that in each step a ran-
dom element of the array is toggled (from one to zero or vice versa). If this change
leads to an improvement of the objective function to be optimized, it is always
accepted. If the change worsens the objective function, then it is accepted with a
probability< 1 only. Large deteriorations of the objective functions are less likely
to be accepted than small ones, and during the execution of the algorithm the con-
ditions for accepting a worsening of the objective function become more and more
stringent (“cooling” process in Simulated Annealing). Such search algorithms have

∗ The signal energy of an array is the sum of the squares of the array elements.
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Figure 4.Known Uniformly Redundant Arrays up to size 100× 100, by open fraction.

the capability of avoiding local extrema of the objective function. For details and
search results, the reader is referred to an earlier paper (Busboom et al., 1997a).

6. Summary

It was the intention of this paper to provide the reader with an overview of proper-
ties and construction methods for Uniformly Redundant Arrays that are known
to be optimum mask patterns for coded aperture imaging. We have attempted
to present each construction method as concisely as possible while still being
comprehensive enough to enable the reader to implement it without the need for
further material. However, readers wishing to apply a particular type of URA in
a coded aperture imaging system may wish to refer to the original articles de-
scribing the construction method. We have put emphasis on the sizes and open
fractions of the URA’s that each construction method yields. This should enable the
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Figure 5.Known Uniformly Redundant Arrays up to size 100× 100, by construction method.

reader to quickly identify a construction method that is suitable for their particular
application.

Figures 4 and 5 summarize the array sizes up to 100× 100 elements for which
URA’s are known to exist. In Figure 4 the open fraction is indicated for each array
while Figure 5 shows the construction method used to obtain each URA.

The construction methods discussed in this paper comprise, to the best of our
knowledge, all currently known two–dimensional binary arrays with flat PACF
sidelobes. While for many sizes it has been proven that a URA cannot exist, there
remains a large number of sizes for which the question of existence of a URA
is open (the smallest size being 8× 12). We do suspect, however, that the con-
struction methods presented here actually comprise the vast majority of Uniformly
Redundant Arrays.

For the case that an aperture size and open fraction is required due to technical
considerations for which no URA exists or is known, we have presented three alter-
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natives to URA’s. The generalized folding introduced in Section 5.1 only requires a
slight modification of the aperture mosaicking and preserves the optimum imaging
properties of URA’s. The two other alternatives, MURA’s and heuristic search,
lead to arrays that do not have strictly constant PACF sidelobes but whose imaging
properties may be indiscernibly close to those of Uniformly Redundant Arrays for
practical purposes.
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