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Charge Transport in Arrays of Semiconductor Gamma-Ray Detectors

H. H. Barrett, J. D. Eskin, and H. B. Barber

Department of Radiology and Optical Sciences Center, University of Arizona, Tucson, Arizona 85724
(Received 27 December 1994)

We analyze the effects of electrode size on performance of arrays of semiconductor gamma-ray
detectors, especially when there is significant charge trapping. With large electrodes, motions of holes
and electrons are of equal importance, but when the positive electrode is segmented into an array of
small elements the contributions of holes to the output, and hence the effects of hole trapping, are
much less significant. The implications of this analysis for the design of practical detector arrays are
discussed, and some preliminary experimental verification of the theory is presented.
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Gamma-ray detector arrays are important tools in
high-energy physics, nuclear spectroscopy, nondestructive
testing, gamma-ray astronomy, and medical imaging.
Semiconductor detectors are advantageous for these ap-
plications because of their good energy resolution and the
ability to fabricate compact arrays with very small ele-
ments. In imaging applications, the detector elements are
referred to as picture elements or pixels. One important
gamma-ray imaging application for which semiconduc-
tor arrays are currently receiving considerable attention is
single-photon emission computed tomography (SPECT),
a nuclear-medicine technique where a three-dimensional
map of the concentration of a radiotracer is formed. It
has recently been demonstrated that reduction in pixel size
allows important improvements in sensitivity and spatial
resolution of the final image in this application [1].

Various semiconductor materials have been used in
gamma-ray detector arrays. Silicon and germanium have
excellent energy resolution and charge-transport proper-
ties, but low atomic number, so they do not effectively
absorb high-energy gamma rays. Because of its small
band gap, germanium must be operated at cryogenic tem-
perature. Recent research has concentrated on materials
with high atomic number and large band gaps; examples
include mercuric iodide (Hgl,) [2], cadmium telluride
(CdTe) [3], and cadmium-zinc telluride (Cd;-,Zn,Te,
x = 0.04-0.2) [4]. Though these materials operate at
room temperature and are usable for gamma-ray ener-
gies up to several hundred keV, they do not have the de-
sirable charge-transport characteristics of Si or Ge. The
carrier mobilities are lower, and the carriers are trapped
at impurities or defects. Both of these effects are usu-
ally more serious for holes than for electrons. Because
of the trapping, the total charge induced in an integrating
readout circuit depends on the depth at which the gamma
ray is absorbed. As a result, the pulse-height spectra of
these materials typically show a tail or plateau, with a
large fraction of the events occurring in this tail instead
of in the desired photopeak [5,6]. Since events in the tail
convey little useful energy information, some of the ad-
vantages of semiconductor detectors are negated by hole

trapping.
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The induced currents due to charge motion in vacuum
were analyzed in classic papers by Shockley [7] and Ramo
[8]. Ramo introduced the concept of a “weighting poten-
tial,” applied by later authors to gas and solid-state radia-
tion detectors [9—13]. An important line of investigation
[14] attempts to devise detector geometries in which the
detected signal results primarily from electron transport.
A practical demonstration of this possibility was the re-
cent paper by Luke [15] on a solid-state counterpart of
Frisch grids [16], developed originally for gas detectors.

The purpose of this Letter is to demonstrate theoreti-
cally and experimentally that semiconductor detector ar-
rays can be made relatively insensitive to hole trapping
by the simple expedient of properly choosing the pixel
size. The method of calculation is the classic electrostatic
Green’s function, but it is easy to show that the results
are equivalent to what would be obtained by use of the
Ramo-Shockley theorem and weighting potentials [17].

We consider a homogeneous slab of high-resistivity
semiconductor of thickness L. The lateral dimensions
of the slab are much larger than L and assumed to
be infinite. On one side of the slab is a continuous
metal electrode covering the entire area and maintained
at potential Vj; on the other side is a metal electrode
segmented into an array of individual square pixels of
size € X €. There is a gap of negligible dimension
between the pixel electrodes, but no other mechanical
or electrical separation of the pixels is employed. Each
pixel is connected to a separate amplifier of very low
input impedance which maintains the electrode at zero
potential. The basic electrostatic model is thus nothing
more than a parallel-plate capacitor, except that current
through individual pixels can be measured separately. A
practical device that closely matches this model is under
investigation in our laboratory [18].

Using this model, we now calculate the current that
flows in each pixel after absorption of a gamma ray.
We assume the gamma ray is absorbed at time ¢t =0
and at point (x;, y;, z;), where x; and y; are in the
plane of the slab and z; is measured from the segmented
electrode. The gamma ray is assumed to interact with
the semiconductor by a photoelectric process, with the
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photoelectron producing Ny hole-electron pairs within
a short distance of the initial interaction point. Both
the finite range of the photoelectron and the small
statistical fluctuations in Ny are neglected here but will
be considered in a later publication.

The electrons drift towards the positive electrode at
speed v, = u.E while the holes drift towards the negative
electrode at speed v, = u,E, where w, and u, are the
electron and hole mobilities, respectively, and E = V/L
is the applied electric field. For reasons that will become
apparent shortly, we assume that the segmented electrode

pe(x,y,z,1) = —eNogb(x — x;)8(y

+ (1/vere) expl(z —

where 7, is the trapping-limited electron lifetime
rect(u) = 1if lul = 3,0if |ul > 3, and 8(-) is the Dirac
delta function. A similar expression gives the charge
density for holes.

The next task is to compute the current in the external
circuit as a result of the carrier motion. This is very
easy to do for large electrodes; a simple conservation-of-
energy argument [20] shows that a single carrier moving
a distance Ax in time Ar induces (on average) a current
I(t) = e Ax/L At in the electrode during this time. The
total induced charge, which is the quantity of interest
if an integrating or charge-sensitive amplifier is used,
is e Ax/L. If an electron-hole pair is created at depth
z; and there is no trapping, the hole moves a distance
L — z; and contributes e(L — z;)/L to the charge, while
the electron moves a distance z; and contributes ez; /L, so
the total charge is e per electron-hole pair. On the other
hand, if the hole is immediately trapped (v, 7, < L), then
there is essentially no hole contribution, and the total
induced charge can vary from O to ¢ depending on the
random depth of interaction. This is the origin of the tail
mentioned in the introduction.

The conservation-of-energy argument is not applicable
with segmented electrodes since it gives only the total
current that flows in the external circuit, not the fraction
that flows through a single pixel. To study the output
from an individual pixel, we solve Poisson’s equation
V2¢ = —p/e and use the solution to determine the
normal derivative of the time-varying potential at all
points on the surface of a single pixel electrode. By
Gauss’s law, this normal derivative implies a time-varying
surface charge density on the pixel, and an integral over
the area of the pixel gives the total induced charge on the
pixel as function of time. From this expression current-
vs-time wave forms or total collected charge on the pixel
can be computed.

The Green’s function for this problem can be computed
as an infinite series of pairs of image charges, with the

— yofexp(—1/7)8[z — (2 —
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is the positive one, but the analysis is easily modified for
the opposite case. As the carriers drift, some of them are
trapped, and the total volume charge density must include
the immobile trapped component as well as the drifting
carriers. We neglect diffusion of the carriers since we
can show that the diffusion length is negligible compared
to typical pixel dimensions over the drift time [19], and
we neglect detrapping of the charge carriers. With these
assumptions, the total time-dependent charge density for
electrons (both trapped and free) is given by
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result [21]
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where 72 = (x — x9)*> + (y — yo)>. The sum in Eq. (2)
converges rapidly and satisfies Dirichlet boundary con-
ditions. As a check, we have verified that this Green’s
function leads to the expected linear variation of potential
with z in the absence of volume charge.

The remainder of the calculation is a standard exercise in
electrostatics [22]. The results include current wave forms
and total induced charge as a function of electron and hole
mobilities and trapping lifetimes, depth of interaction of
the gamma ray, and size of the pixel. From these results,
expected pulse-height spectra can be computed.

Figure 1 shows calculated integrated-current wave
forms for two different pixel sizes and three depths
of interaction. With large pixels and no trapping, the
currents are constant until the carriers have drifted com-
pletely across the slab. This numerical result, which is in
complete accord with the standard conservation-of-energy
argument, provides another cross-check on the Green’s
function method. For small electrodes, the standard
method does not work, and our approach gives new
results. If the pixel size is € X €, a drifting electron
does not make much contribution to the current through
a particular pixel until it comes within a distance z = €
of that pixel. As a result, the current wave form shows
a sharp peak near the end of the drift. If there is no
trapping, the total induced charge Q. (the integral under
the current wave form) is just e per electron-hole pair as
expected, providing yet another check on the theory.

If there is trapping, striking differences between large
and small pixels emerge. Figure 2 shows the relative
fraction of Q,n contributed by electrons and holes for
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FIG. 1. Collected charge vs time for different pixel sizes.

These wave forms are calculated for interaction points directly
over the center of the pixel and for positive bias on the pixel
electrode. Therefore, in the absence of trapping, the electron
will strike the center of the pixel. The interaction depths are at
z; = 0.2L, 0.5L, and 0.8L.

different pixel sizes and interaction depths. It is seen that
holes are quite unimportant if the signal is sensed on a
small positive electrode. Therefore, if holes are trapped
more strongly than electrons, the total signal is far less
dependent on depth of interaction with small pixels than
with large ones.

These predictions were tested experimentally with a
1.5 mm thick slab of CdggZng,Te. In this material the
electron drift length (w.7.E) is typically about 2 orders
of magnitude larger than the hole drift length. For the
specific material used in the experiments reported here,
MeTE is about 20L while w7, E is only about 0.16L for
Vo = 200 V and L = 1.5 mm. Thus most of the electrons
will drift all the way across the crystal and contribute fully
to the output, but holes are strongly trapped. One side of
the slab is covered with a continuous metal film, used as
the negative electrode. The other side has a 48 X 48 array
of small pixels, each 0.125 X 0.125 mm. Each electrode
is connected via indium-bump bonding to a matching
pad on an interconnection device called a fanout. The
fanout allows various contiguous subsets of the pixels to be
connected together electrically, forming larger composite
pixels ranging in size from 0.25 mm to 2.5 mm. We thus
have available on a single slab pixels much smaller than
the slab thickness and ones almost twice as large as the
thickness.

Extensive measurements on this device have been made.
Current wave forms have been observed with both gamma-
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FIG. 2. Total collected charge for holes and electrons ab-
sorbed at depth z; = 0.2L as a function of pixel size.

ray and alpha-particle excitation, and pulse-height spectra
have been recorded under a variety of conditions. A full
report on these studies will be published separately, but
Fig. 3 illustrates one of the most important results. To
obtain the experimental spectra shown there, the crystal
was irradiated with uncollimated 140 keV photons from
99mTc. Each composite pixel was connected to standard
pulse electronics, and the spectrum was recorded on a
multichannel analyzer. The simulated spectra were cal-
culated by use of the Green’s function model described
in the text, with gamma-ray interactions randomly dis-
tributed within the volume of the crystal according to an
exponential law, with the attenuation coefficient appropri-
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FIG. 3. Theoretical and experimental pulse-height spectra for
two different pixel sizes, € = 1.25 mm (top) and 0.375 mm
(bottom). A weak K-escape peak seen in the experimental
spectra is not accounted for in the theory.
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ate to 140 keV. Measured wr values were used. A con-
stant electronic noise was assumed, with the standard devi-
ation adjusted to approximately match the measured spec-
tra. There were no other adjustable parameters in the cal-
culation.

It is evident from Fig. 3 that the tail effect is very
severe with a large pixel but greatly reduced with a
smaller one. Though not shown here, experiments with
still smaller pixels showed a larger tail. The 0.375 mm
pixel shown in Fig. 3 gave the best measured spectrum.
The theory qualitatively predicts the experimental spectra
but underestimates the tail somewhat. The discrepancy
between theory and experiment is probably because the
theory takes no account of charge diffusion and the finite
volume over which the initial charge is created, effects
that become more pronounced for small pixels. Further
investigations will refine the theory by accounting for these
effects.

In conclusion, we have shown that the deleterious
effects of hole trapping are greatly reduced if the positive
electrode is divided into an array of small pixels. Then
hole transport contributes relatively little to the measured
signals and the tail in the pulse-height spectrum is reduced
significantly. This result is important in terms of both
efficiency and energy resolution of the detectors. In
the past, detectors made of materials such as CdTe
and CdZnTe had to be thin in order to get good hole
collection, or else the user had to accept a poor spectrum
with few events under the photopeak. In either case, the
photopeak efficiency of the detector was poor except for
gamma rays of very low energy. The theory presented
here shows that thick detectors can be used with small
pixels without sacrificing photopeak efficiency.

Several practical design rules for array detectors follow
from the analysis given here. One is that the segemented
electrode should always be the positive one if hole
trapping is stronger then electron trapping, as it usually
is. Another is that the detector thickness should be
several times larger than the pixel size, allowing the
detector to have good stopping power. The analysis
also suggests that row-by-column readout is likely to
encounter difficulties with materials such as CdZnTe.
The negative electrodes will give poor spectra because
of the hole trapping, and the signals may be too weak
even for determination of position. A pixel-based readout
scheme is much more attactive in these materials. Finally,
designers of pulse electronics for array detectors should be
aware of the faster rise time and reduced dependence on
depth of interaction when small pixels are used.
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