Coded éperture imaging: the modulation transfer function
for uniformly redundant arrays |

E. E. Fenimore

Coded aperture imaging uses many pinholes to increase the SNR for intrinsically weak sources when the ra-
diation can be neither reflected nor refracted. Effectively, the signal is multiplexed onto an image and then
decoded, often by computer, to form a reconstructed image. We derive the modulation transfer function
(MTTF) of such a system employing uniformly redundant arrays (URA). We show that the MTF of a URA
system is virtually the same as the MTF of an individual pinhole regardless of the shape or size of the pin-
hole. Thus, only the location of the pinholes is important for optimum multiplexing and decoding. The
shape and size of the pinholes can then be selected based on other criteria. For example, one can generate
self-supporting patterns, useful for energies typically encountered in the imaging of laser-driven compres-
sions or in soft x-ray astronomy. Such patterns contain holes that are all the same size, easing the etching
or plating fabrication efforts for the apertures. A new reconstruction method is introduced called 6 decod-
ing. Itimproves the resolution capabilities of a coded aperture system by mitigating a blur often introduced

during the reconstruction step.

I. Introduction

For many situations in which an x-ray image is
sought, one is faced with the problem that the x rays
neither refract nor reflect. Thus, normal optics cannot
be used. Two systems that can be used are the single-
pinhole camera and the rastering collimator. Both
systems usually require very long exposure times due
to the inherently weak nature of many x-ray sources.
Given the same resources of time and available detector
area, both the pinhole and the rastering collimators
produce images with approximately the same quality,
that is, the same signal-to-noise ratio (SNR). Coded
aperture imaging is a technique that seeks to overcome
the normally poor SNR in x-ray imaging.

In coded aperture imaging, the pinhole of the simple
pinhole camera is replaced by many pinholes arranged
in some pattern. The recorded picture consists of many
overlapping images of the x-ray source, one image from
each pinhole. The overlapping is so severe that the
recorded picture usually bears no resemblance to the
x-ray object. This necessitates some form of processing
of the recorded picture to reconstruct the x-ray
object.
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The usual goal of coded aperture imaging is to im-
prove the image by increasing the collecting area with
the use of many pinholes but maintain the same angular
resolution as a single pinhole. To accomplish this goal,
a suitable choice for the pinhole pattern and decoding
method must be made. A simple mathematical model
gives insight into how those choices should be made. If
A(x,y) is the aperture transmission and S(x,y) is the
x-ray object, the expected value of the recorded picture
can be modeled as!3

P(x,y) = S(x,y) * A(x,y) + N(x,y), 1)

where * is the correlation operator, and N(x,y) is a sig-
nal-independent noise. Signal-independent noise is
considered to be whatever signal is not modulated by
the aperture (e.g., the signal due to cosmic rays, elec-
tronic noise). The usual method of decoding is by fil-
tering the picture to reconstruct the x-ray source, that
is, the reconstructed source can be found as

R(xy) = P(x,y) » Gx,y) =S+ [A+G] + N + G, @)

where G (x,y) is referred to as the decoding function.
Equations (1) and (2) provide the basis for criteria for
the selection of A and G. A and G should be chosen so
that the reconstructed image is a faithful representation
of the x-ray object at a resolution commensurate with
a typical opening in the aperture. A and G should also
not allow noise to dominate the reconstruction. The
modulation transfer function (MTF) is useful in de-
termining how faithful and how susceptible to noise the
system is. The MTF indicates, as a function of spatial
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frequency, how efficient the imaging system is in passing
frequency information. If the MTF has a zero value at
some frequency, the image after processing no longer
contains any structure with that frequency. If the MTF
has a low value, the image after processing does not
contain that frequency at the same strength as in the
original object. Rather, the amplitude of that fre-
quency component is proportional to the MTF.

In principle, one wants a MTF that is monovalued so
that all frequencies are passed equally well. In practice,
the noise in the system and the finite size pinholes
prevent monovalued MTFs. For example, from Eq. (2)
A * @ is recognized as the system point-spread function
(SPSF). As such, the frequency response of the system
is

MTF4.c = |F(A * G)| = |F(A) - F(G)], (3)

where F is the Fourier transform operator, and for
simplicity we have not included the normalization to
unity at zero frequency. By choosing G to be the cor-
relational inverse, A * G becomes a 6 function, and the
MTTF is monovalued. However, for any actual aperture,
F(A) is not monovalued, typically falling off at high
frequencies due to the finite size of the pinholes. Thus,
for the MTF of the system to be monovalued, F(G)
must have large values so that F(A) - F(Q) is constant.
Although this in principle would provide an optimum
SPSF, the large values in F(G) could cause the noise
term (N = G) in Eq. (2) to dominate the reconstructed
image.

We are faced with the following requirements for A
and G:

(1) The SPSF should be similar to a 6 function so
that the reconstructed image is a faithful representation
of the true object. In frequency space this means that
the MTF of A * G should be as flat as possible. Another
way of stating this is to say that A * G should pass all
frequencies equally well, realizing that it undoubtedly
falls off at high frequencies.

(2) To mitigate the effects of the noise, the MTF of
A should be as flat as possible. If the MTF of A is
monovalued, F(G) will not require excessively large
terms to produce a 6 function SPSF [see Eq. (3)]. An
alternate way of stating this requirement is that A
should pass all frequencies equally well.

These requirements on A and G have not been met
by most of the proposed aperture patterns. Fresnel
zone plates,12 particularly those with few zones (e.g.,
<50), and random arrays3 have a range of values in their
MTFs. The range of values means that the recorded
picture will not have the same distribution of frequen-
cies as the original object. If the reconstructed image
does not have the same frequency distribution as the
original object, the reconstructed image will not be a
faithful image of the original object, an undesirable
situation. One way for the system to produce a recon-
struction that does have the same frequency distribu-
tion is to have the G function increase those frequencies
that are low. This compensates for the fact that the
aperture did not pass those frequencies as well as others.
Such an analysis uses a G function related to the con-
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Fig.1. Twocyclesof anr X s URA pattern. Note it has periods rc

and sc with square ¢.X ¢ pinholes.

volutional inverse of A. It requires G to enhance some
frequencies in the recorded picture. Unfortunately, G
also enhances whatever noise is present at those
frequencies in the recorded picture. The enhanced
noise often dominates the reconstruction. As an al-
ternative, it is common to use for G either A or a scaled
version of A.2-5 Such an analysis (referred to as a cor-
relation analysis or matched filtering) reduces the po-
tentially damaging effects of the noise term. However,
the SPSF is not a 6 function, and artifacts are intro-
duced into the reconstruction.245 In either case
(convolutional inverse or correlation analysis) the re-
constructed object can differ from the original object.

Recently, a new type of pattern was proposed called
uniformly redundant arrays® (URA), which can satisfy
both the requirement for a 6 function like SPSF and
good noise handling characteristics. It is the purpose
of this paper to derive the MTF for URA patterns. The
insight gained from the derivation will be used to im-
prove the design and decoding method of URA imaging
systems.

Il. MTF of the URA Aperture

Although there are several types of URA functions,®
they all have the following three characteristics:

(1) They can be periodic, and in fact URAs are usu-
ally implemented as a mosaic of two cycles of a basic
URA pattern.® Figure 1 is a typical URA mosaic. Each
pinhole is a ¢ X ¢ area, and the basic pattern contains
r X s elements. Thus, the mosaic has a period of rc in
one direction and sc in the other.

(2) The centers of the holes can occur only at equally
spaced grid points. In Fig. 1, the spacing is c.



Fig.2. Demonstration of how the aperture function can be decom-
posed into a function describing the locations of the pinholes and a
function representing the pinhole shape.

(3) Ifthe aperture is represented by a computer array
(as in Ref. 6), the cyclic autocorrelation has a peak at
zero lag (equal to dg) and is monovalued (value d;) at
all other lags.

Figure 2 is a 1-D scan through a section of A(x,y) and
demonstrates how the aperture function can be repre-
sented as a convolution of a pinhole function [h(x,y)],
which describes the shape of the individual pinholes,
and a function consisting of § functions at those grid
points which contain a hole [u(x,y)]. The complete
description of A(x,y) includes a box function b(x,y),
which limits the intrinsically infinite u(x,y) function to
some finite size. In practice, the aperture usually
consists of two cycles of the URA function. However,
. in the reconstruction step an area of the recorded pic-
ture equal to only one cycle is used in a cyclic correla-
tion. The MTF of such a system is characterized by a
b(x,y) function, which limits the aperture to one cycle.
Therefore, we will use b(x,y) equal to one only if 0 < x
<rcand 0 <y < sc and b(x,y) equal to zero other-
wise. :

Given these functions, the aperture can be repre-
sented as (Fig. 2)

Axy) = {u(x,y) « h(x,)]b(x,y). “4)

The properties of the Fourier transform of the aper-
ture can be derived from Eq. (4) and the properties of
u(x,y). Equation (4) can be written in frequency space
as

F(4) = [U(w,v) - H(p,v)] * B(,v). (5)

Here, U, H, and B represent the Fourier transform of
u, h, and b, respectively.

The first two of the above-mentioned characteristics
of URAs give rise to properties of U(u,v). Because u
consists of ¢ functions that can occur only at spacing c,
U is periodic with a period of 1/c. In addition, since u
is periodic (with a period of r¢), U consists of é functions
at spacing 1/re, that is,

Ulp,p) = U(u + 1/c, v + 1/c), ©

s—1r—
Ulpr) = ¥ ZI Dy é(u ~ k/re)o(v — Use),
1=0 k=0

when 0 < 4 <1/c and 0 < » < 1/c. Thus, U is com-
pletely determined by the rs values of Dj;. One portion
of our task in determining the MTF of a URA pattern
is to calculate all values of Dy.

The correlation property of A(x,y) [property (3)
above] means that

uxu(xy)=u=*ulx+rcy+sc)

(7
u * u(x,y) = dod(x)d(y) + dy jil ;Zl 8(x — ke)o(y — lc),
=1 k=1

when 0 <x <rc, 0 <y <sc.

Since u is real and symmetric, U2 = F(u * u), and the
Fourier transform of u * u can give |U|. One can either
apply the definition of a continuous Fourier transform
to Egs. (6) and (7) or one can use the relationships be-
tween discrete Fourier transform and continuous
Fourier transform. Following the latter source, one
recognizes [given Eq. (6) and the relationships in Ref.
7] that a discrete Fourier transform of u * u(x,y) sam-
pled on an r X s grid gives precisely UZ(u,r) at
frequencies k/rc and I/sc with0 <k <r—1and0<1<
s — 1. Because these are the only possible frequencies
at which | U(u,»)| has nonzero values [see Eq. (6)], the
discrete Fourier transform can completely determine
the continuous function U2(u,r). Equation (7) can be
rewritten as

u * ulx,y) = (do — d1)8(x)d(y)

+dy S b(x — ke)dly — le), ®)
=0 k=0

when 0 <x <rc¢,0 <y <sc.
The discrete Fourier transform gives

U%,9) « dyd(w)5(0) + [(do — du)/irs]
X TS 8 = kire)s(w — Usc), ©
=0 k=0

when 0 < 4 < 1/c and 0 < v < 1/c, where the standard
constant of proportionality cannot be specified because
technically the Fourier integral is infinite due to the
infinite nature of u(x,y).

Figure 3(a) shows a 1-D slice through a typical
|U(u,v)|. U(,v) tells us how the multiplexing affects
the frequency distribution in the recorded picture.
(The effect of the hole shape will be considered below.)
Fortunately, |U(u,7)| is monovalued except at (I/c, J/c),
where I and J are integers. Thus, all frequencies are
passed equally well except (I/c, J/c), which are passed
very strongly. The URA can be considered a phase-
scrambling encoding system, which forms a recorded
image with the same frequency information as in the
original object.

Since Eq. (9) gives only U2, we have not determined
the complex phase of U(u,v). The phase can be found
by applying the definition of a discrete Fourier trans-
form directly to u(x,y). For example, for the URAs of
Ref. 6, we found that the phase assumes only four dif-
ferent values within U(u,v). The terms U(k/rc, 0) and
U(0, l/sc) are real with opposite signs. The remaining
terms have phase +3, where 8 depends on the particular
URA pattern. We have also found that

Ulk/re, lsc) = B if Ake,lc) = 1
= —Bif A(ke,lc) =0, (10)

where k # 0,and ! ¢ 0. Thus, the phases in U(u,v)
have the same pattern as the pattern of pinholes and
solid material in the aperture. Note that, given Egs.
(8)—(10), one can completely determine U(u,v) by cal-
culating one U(k/re, I/sc).
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The complete determination of F(A) involves U(u,v),
H(u,v), and B(u,v). For example, if each hole consists
of a ¢ X ¢ area (as in Fig. 1),

H(u,v) = sin(2mwcp) sin(2mwev)/pv. (11)

Figure 3(b) plots H(u,v), and Fig. 3(c) shows | U(u,v) X
H (u,u)| The infinite and periodic nature of u{x,y)
gives rise to the discrete nature of Fig. 3(c). In practice,
A(x,y) is usually limited in extent resulting in a con-
tinuous function for F(A) [see Eq. (5)]. Using the
b(x,y), which limits A (x,y) to one cycle, gives

B(u,v) = sin(werp) sin(wesv)/uv, (12)

which is plotted in Fig. 3(d). Figure 3(e) shows a typical
URA MTF, that is, |F(A)| [calculated by Eq. (5)].

(dg=d|)/rs
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-2/ _ArC 0 1ON_—"2/C
(b) =
d
(do‘d V/rs
ARATEY irm lllllll”” 1 1°
-2/C -1/C _2/C
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Fig.3. Various functions used to derive the MTF of a URA aperture:
@ [Up)]; (b) H(pp); (© |Ulpy)-H@); @) Blep); (o)
|F(A)].
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Fig.4. (a) MTF of a URA whose pinholes are ¢/2 X ¢/2 squares; (b)

MTTF of a URA whose pinholes are round with a diameter of ¢/2.

Note that the practical effect of B(u,v) is to blur to-
gether the ¢ functions of U(u,v)H (u,v). This gives rise
to the primary result of this paper, which is that F(4)
is very well approximated as H(u,v). The only practical
differences are at the dc term and perhaps at values of
(u,v) equal to (I/e, J/c). Thus, the MTF of a URA
pattern is virtually the same as the MTF of a single in-
dividual pinhole in the pattern.

The complex convolution of (U - H) with B might not
be expected to be as well behaved as the absolute value
of F(A) because U has phase changes that might force
F(A) to have zeros. In fact, it is well behaved. The
locations of the zeros in B(u,v) are such that F(A) is
identically H (u,v) at frequencies (k/rc, I/sc) if the pic-
ture array has one sample per ¢ X ¢ area. When more
samples per ¢ X c area are taken (i.e., fine sampling), the
phase does not change in a manner that could have F(A)
very different from H(u,v) at any frequency sampled
(except perhaps I/c, J/c). (This assumes that there is
an integer number of samples per ¢ X ¢ area.) Thus, in
a digital implementation of the decoding, the frequen-
cies sampled always have the value H(u,v) except at I/c,
J/c. Insummary, the decoding cancels whatever phase
scrambling there is.

Figure 4 gives two examples of the MTF of some ap-
erture functions. For Fig. 4(a) it was assumed that each
hole was a ¢/2 X ¢/2 square (with ¢ being the separation
between adjacent holes). Note that the peaks in U(u,»)
at (I/c, J/c) do not affect F(A) because they always
occur at a zero in H(u,»). For Fig. 4(b) it was assumed
that each hole was round with a diameter of ¢/2. This
results in an Airy disk for H(u,v) and F(A) that contains
spikes at (I/c, J/c).

It is instructive to compare the MTF of a URA pat-
tern with the MTTF expected for another commonly used
coded aperture, the random array.? Of course, an in-
finite random array has the same properties as a URA.
The following comments refer only to finite random
arrays. The random array can be decomposed into a



ur(x,y) and hg(x,y), and the corresponding Ug (i,7) can
be calculated. Here the subscript R refers to random.
Figure 5(a) is a 1-D slice through Ug (u,7) and is anal-
ogous to Fig. 3(a). Those frequencies at which Ug (u,»)
is small were not passed well by the aperture, and, thus,
the recorded picture is not only phase scrambled but
also amplitude scrambled.

Although Hg (u,r) would be the same for both URAs
and random arrays, the MTFs are different. Figure
4(b) is analogous to Fig. 3(e) and shows the MTF of a
random array (assumed to be periodic for the sake of
this demonstration). Although the overall trend of Fig.
4(b) is similar to Fig. 3(e), the random array MTF
contains a range of values including very small terms
due to the amplitude scrambling. In fact, we foundé
that roughly 15% of 32 X 32 random arrays have a zero
in their transform at frequencies <1/c. For G to restore
the amplitude at those frequencies where the MTF is
small, G must at the same time enhance whatever noise
is present at these frequencies. To avoid that enhanced
noise, a G that restores the amplitudes is typically not
used. Rather a correlation analysis is used, but that
leads to artifacts. In contrast, the MTF of the URA is
well behaved, falling off almost exactly as does the MTF
of a single pinhole. The contribution by the noise to a
URA reconstructed image has the same distribution (in
frequency space) as would be expected by a single pin-
hole.

The comparison between the random array and the
URA demonstrates that the good multiplexing prop-
erties of the URA are the result of the locations of the
holes in the URA pattern and not their shape. Any hole
shape can be used.

lll. Selection of the A and G Functions

The MTF of A derived in the previous section pro-
vides insight into the URA function, which can lead to
improved capabilities. For example, it is the location
of the holes (but not their shape) that produces the
desirable characteristics of the MTF of the URA. By
desirable we mean no small terms in F(A4), which would
cause the noise term to dominate. Rather than being
restricted to square holes of size ¢ X ¢, one can select a
more convenient hole shape. Round holes offer the
advantage of being easier (than square holes) to fabri-
cate by various plating processes. In addition, by
making the holes smaller than ¢ X ¢ the aperture be-
comes self-supporting with all holes the same size.
Identical holes ease the fabrication effort. Note that
the holes in Fig. 1 cause the aperture plate to fall apart.
A supporting substrate eliminates this problem, but in
some applications the x rays are at such a low energy
that a substrate causes unacceptable absorption. For
this reason, the recent® imaging of a laser-driven com-
pression with a URA camera involved square holes of
size ¢/2 X ¢/2, which was self-supporting.

We now turn to the G function. The first G function
proposed!-3 was to use G equal to A (i.e., an autocorre-
lation analysis). The SPSF becomes A * A, which, as-
suming square holes, is a pyramid on top of a dc term
(i.e., it is the convolution of two pinholes). One pinhole
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Fig. 5. (a) Fourier transform of u(x,y) for a random array; (b) MTF
of a random array.
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Fig. 6. (a) SPSF for a correlation analysis; (b) MTF for balanced
correlation; (c) SPSF for é decoding; (d) MTF for & decoding.

is inherent in the imaging for it arises from the pinholes
in the aperture. The second pinhole arises from the fact
that the recorded picture is correlated with a G function
equal to A, which is equivalent to convolving with an-
other pinhole. The MTF of the system (that is, in-
cluding the encoding and decoding) is just the square
of the MTF of the aperture F2(A).

Reconstructed images from an autocorrelation
analysis contain large dc terms. That dc term can be
removed by using balanced correlation®® for which

Gplx,y) =1if A(x,y) =1
Gplx,y) =M/(M — N)if A(x,y) = 1 (13)

when 0 <x < 2rs, 0 <y < 2sc; Gp(x,y) = 0, otherwise
N is the number of holes in an rsc? area of the URA, and
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M is the value of the side lobe of A * A [see Eq. (4) of
Ref. 9]. The subscript B refers to balanced correlation.
Such a formulation for Gp has the effect of removing the
dc term in A * A. However, the shape of the central
peak in the SPSF is still a pyramid [Fig. 6(a)]. The
resulting MTF is thus virtually the same as that ob-
tained from two convolved pinholes [Fig. 6(b)].

The resolution of two convolved pinholes is inferior
to that of a single pinhole [compare Fig. 6(b) with 3(e)].
It is inferior because the second of the two convolved
pinholes adds an additional blur to the image. Itisas
if one forms a picture with a single pinhole [causing a
blur whose MTF is shown in Fig. 3(b)] and then views
that image through a second pinhole (causing the ad-
ditional blurring). The origin of the second pinhole is
the correlation of the recorded image with a G function
containing finite sized pinhole areas.

The development of the URA MTF forms the basis
for a new way to analyze coded aperture images, which
mitigates this second blurring. In principle, the tech-
nique is to use

Gs(x,y) = u'(x,y) - b(x,y), (14)
where

u'(x,y) = lifu(xy) =1
= M/(M — N)d(x — kc)d(y — lc) otherwise

with0 <k < 2r,0<1<2s. The G;function is similar
to Gg except it does not contain the hole shape function
h(x,y). Rather, it contains, in principle, 6 functions
(thus the name 6 decoding). Note that G s does not have
that component of Gg(x,y), which contributes a second
blurring during the reconstruction.

It is not possible to represent a infinitesimally thin
6 function in the digital reconstruction, nor is it advis-
able, for the bandpass of a true ¢ function is infinite,
probably causing a decreased SNR. In the digital im-
plementation, the so-called 6 functions are represented
as a single element of a computer array, giving them an
effective width. Typically, one might sample the re-

corded image in such a manner that the width of a single ,

element represents about one-fourth of the width of the
pinholes. Such & decoding was used in the recent URA
imaging of a laser-driven compression.®

Figure 6(c) is the SPSF for 6 decoding. Note that it
is virtually the same as a single pinhole response (i.e.,
a box function) except it is actually a trapezoid. The
trapezoid results from the fact that the 6 functions have
some finite width associated with them. Employing
arguments similar to those used to develop Eq. (9), one
can show that

U(up) = Fu' +u’) « X3 8(u — k/re)d(v — l/sc), (15)

which is just equally spaced monovalued é functions.

The system MTF then becomes
MTF; = |F(A * G;)|
= |[U(u,v) - H(g,v) * B(p,v)] - [U'(w,v)
- Hs(u,v) * Bp,»)]l, (16)
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which is plotted in Fig. 6(d). Hs(,,) is the Fourier
transform of a box function whose width equals the
width represented by a single sample in the decoding
array. Note that 6 decoding has a better frequency
response than that of a correlation analysis [i.e., Fig.
3(e)]. Delta decoding for optical reconstructions means
using a mask in the reconstruction step that has smaller
holes that the mask used as the aperture. Details of
implementing & decoding for digital reconstructions will
be presented in a forthcoming paper.

The effects of diffraction and detector response can
be easily included to complete the system MTF. If the
detector has a point-spread function of Q(x,y) and if the
diffraction can be characterized with a point-spread
function D(x,y),

MTFsystem = IF(A * G5 * D * Q)l 17

It should be possible to use Egs. (17) and (18) with
standard image enhancement techniques to remove
some of the single pinhole blurring, detector response
blurring, and/or some of the diffraction.

IV. Summary

The URA avoids the near singularities inherent in the
MTFs of other coded apertures. The study of the MTF
of the URA aperture can provide insight into the
workings of the URA, which can be used to improve its
capabilities. We have derived the MTF by decom-
posing the URA into a function consisting of ¢ functions
that describe the locations of the holes and a function
that gives the shape of the individual holes. In fre-
quency space, the function giving the locations has a flat
Fourier transform except at (I/c, J/c), where I and J are
integers. The phase of U(u,») has a pattern that is the
same as A(x,y). The resulting MTF of the URA is
virtually that of a simple individual hole. Thus, it is the
location of the holes (independent of their shape) that
provides the good imaging characteristics of the
URA.

One is free to choose the shapeof the individual holes.
By making the holes smaller than the spacing between
holes, the pattern becomes self-supporting, eliminating
the need for a supporting substrate. This is an impor-
tant advantage in the imaging of laser-driven com-
pressions, which typically emit x rays that would be
partially absorbed by a substrate. Since no two holes
touch, all the holes can be the same size, greatly easing
the fabrication éffort if done by etching or plating.
Round holes could also be used.

A new decoding method, called 6 decoding, has been
developed. Delta decoding mitigates a blurring that
was present in previous correlation reconstruction
procedures. The MTF of the system using 6 decoding
is virtually identical to that which would be obtained
from a single pinhole of comparable size.

The author wishes to thank T. M. Cannon and H. J.
Trussell for many helpful discussions and useful com-
ments on the manuscript. This work was done under
the auspices of the U.S. Department of Energy.
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