
Coded aperture imaging: predicted performance of
uniformly redundant arrays

E. E. Fenimore

Uniformly redundant arrays (URA) have autocorrelation functions with perfectly flat sidelobes. The URA
combines the high-transmission characteristics of the random array with the flat sidelobe advantage of the
nonredundant pinhole arrays. A general expression for the signal-to-noise ratio (SNR) has been developed
for the URA as a function of the type of object being imaged and the design parameters of the aperture. The
SNR expression is used to obtain an expression for the optimum aperture transmission. Currently, the only
2-D URAs known have a transmission of 1/2. This, however, is not a severe limitation because the use of the
nonoptimum transmission of 1/2 never causes a reduction in the SNR of more than 30%. The predicted per-
formance of the URA system is compared to the image obtainable from a single pinhole camera. Because
the reconstructed image of the URA contains virtually uniform noise regardless of the original object's struc-
ture, the improvement over the single pinhole camera is much larger for the bright points than it is for the
low intensity points. For a detector with high background noise, the URA will always give a much better
image than the single pinhole camera regardless of the structure of the object. In the case of a detector with
low background noise, the improvement of the URA relative to the single pinhole camera will have a lower
limit of -(2f)-/2, where f is the fraction of the field of view that is uniformly filled by the object.

1. Introduction

Coded aperture imaging with Fresnel zone plates
was first conceived by Mertz and Young.1 Dicke2

subsequently suggested random pinhole arrays to
achieve the same basic concept. This concept is to re-
place the single opening of a simple pinhole camera with
many openings called, collectively, the aperture. The
recorded picture will consist of many overlapping im-
ages of the emitting object and, in general, bears no re-
semblance to the object. Computer or optical pro-
cessing of the picture is required to produce the recon-
structed object which should resemble the original
object.

The motivation for using many openings is to improve
the signal-to-noise ratio (SNR) in the reconstructed
object by increasing the collecting area while main-
taining the angular resolution of the small opening.
Adding more openings does not guarantee an improved
SNR; the possible improvement depends on the object,
the pattern of openings, and the processing techniques
used. In this paper we present a SNR relationship for
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the uniformly redundant array (URA) patterns dis-
cussed by Fenimore and Cannon3 (hereafter referred
to as Paper 1).

URAs are nonrandom patterns of openings that have
the distinctive feature that the number of times a par-
ticular separation occurs between pairs of openings is
the same for all separations. The autocorrelation of the
aperture function (defined as one where there is an
opening and as zero otherwise) has perfectly flat side-
lobes. It was shown in Paper 1 that this feature of the
autocorrelation function can be exploited to produce a
coded aperture imaging system that is superior to pre-
viously used systems. Details of implementation are
to be found in Paper 1. For the purposes here, the fol-
lowing heuristic review will suffice.

Figure 1 shows two different methods for implem-
entating the URA. Figure 1(A) shows a standard
method of implementation for coded aperture imaging
that could be used with any aperture pattern. A point
on the source projects a shadow of the aperture onto a
detector. The direction to the point is determined by
the direction in which the shadow pattern is offset from
the center of the detector, and the intensity of the point
is determined by the integrated signal produced in the
detector. In this implementation, the detector should
be large enough to observe the entire shadow produced
by any source within the field of view.

The special properties of the URA give rise to an al-
ternate implementation geometry [Fig. 1(B)]. Here,
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Fig. 1. (A) This coded aperture arrangement employs only the basic
r by s pattern for the aperture and has the disadvantage that the de-
tector must be large enough to contain the image from the full field
of view. (B) This arrangement employs a 2r by 2s aperture com-
posed of a mosaic of basic r by s patterns. Emitting points in the
source produce shadows of cyclic permutations of the basic aperture

pattern, and thus the detector needs to be only r by s in size.
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Fig. 2. A 1-D slice through a reconstructed object for a point source.
The SNR is defined to be the peak height divided by the expected size

of the fluctuations of the peak and the background.

the aperture is a section of an infinite mosaic of a basic
URA pattern. The dimensions of the basic URA are r
by s elements, and the aperture is a 2r by 2s section
centered on a basic pattern. Paper 1 gives detailed
expressions for calculating the aperture function, and
they will not be repeated here. We will treat the aper-
ture function as a 2r by 2s binary array, where a one
represents an opening in the aperture, and a zero de-
notes opaque material. Thus, the ones in the aperture
array have the same pattern as the openings in the ac-
tual aperture.

A source will produce a shadow of the aperture that
has 2r by 2s picture elements and is offset from the
center of the imaging system. However, because the
aperture function is periodic, the central r by s region
of the detector plane will contain a particular cyclic
permutation of the basic r by s pattern. (This is true
so long as certain conditions are met concerning the
relative sizes of the basic array, the aperture array, and
the source; see Paper 1 for details.) Thus, one needs to
use a detector only as large as the projected basic ap-
erture pattern in order to determine the object com-
pletely. The direction to any point on the source is

determined by which particular cyclic permutation is
projected onto the detector, and the intensity of the
point is determined by the integrated signal produced
in the detector. The smaller required detector will be
especially beneficial to applications in x-ray astronomy
where the weight and size of instrumentation are nor-
mally limited. Due to this important advantage, this
paper will emphasize the geometry of Fig. 1(b).

The emitting source is modeled by an array S. Each
resolution element of S (i.e., Sij) represents the inte-
grated number of photons seen by a single opening in
the aperture from one resolution element on the object.
A resolution element is defined as the area of a source
that can be seen through one opening by one point on
the detector. Given the definition of the aperture A
and S, the recorded picture array is (see Paper 1)

P=S*A+D, (1)

where * is the correlation operator, and D is the de-
tector background noise. The reconstructed object is
defined as

S--P*G=S*(A*G)+D*G, (2)

where G is an array chosen such that A * G has desired
properties. In particular, for the URAs used in Paper
1, if G is defined as

Gij = 1 if Aj = 1; G = -1 if Aij = 0, (3)

A * G is a delta function, and S * 6 is exactly the orig-
inal object S. Thus, although G was defined for a cor-
relation, it is also the convolutional inverse of A, which
means the source will be reconstructed perfectly (i.e.,
no artifacts). Since G contains terms that are all of the
same magnitude, it will treat the noise well (i.e., D * G
will be well behaved).

In Paper 1 a particular set of URAs was used in which
approximately one-half of the elements of A were equal
to one, that is, the aperture had a transmission of 1/2. In
anticipation of a generalization of the URA functions,
we have defined the following terms. Let A be the pe-
riodic aperture function equal to an infinite mosaic of
basic (r by s) URA patterns. Let A' be the basic aper-
ture pattern (i.e., an r by s array). Then A * A' will
have a central peak of height N, where N is equal to the
number of ones in A'. For the arrays of Paper 1, N is
equal to (r.s + 1)/2. The correlation A * A' will have
sidelobes that are perfectly flat and which we define to
have a value of M. For the arrays in Paper 1, M is equal
to (r.s + 1)/4. If G is defined as

Gij = 1 if Aij = 1; Gij = M/(M - N) if Aij = 0, (4)

A * G is a function with a central spike equal to N, and
the sidelobes are equal to zero (i.e., a delta function).
For the arrays of Paper 1, M/(M - N) is -1.

I. Signal-to-Noise Ratio for URAs

Figure 2 shows a 1-D slice through a reconstructed
object for a hypothetical point source. The system
point-spread function (SPSF, see Paper 1) predicts that
the expected reconstructed object will be one nonzero
term equal to the intensity of the point source with zeros
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for the rest of the decoded object. (For the purpose of
demonstration, it has been assumed that there is no
detector background noise, i.e., no signal-independent
spurious counts.) The actual reconstructed object will
have noise due to the Poisson statistics involved with
the photons going through each pinhole. These sta-
tistics give rise to both the background fluctuations and
the variation in the peak height (Fig. 2).

Basically the SNR will be the ratio of the expected
height of the peak to some noise term. There are sev-
eral ways to define a noise term for Fig. 2. If one is
solely interested in the intensity of the point source, an
appropriate noise term might be the variance of the
fluctuations of the peak height.4 The problem with
such a definition is that the resulting SNR expression
predicts the best aperture is one that is completely open,
that is, one big hole. A single large hole would have
little angular resolution and would not give a location
for the source. A noise term which is appropriate for
locating sources is the variance of the background in
which the peak must be found.2 However, such a def-
inition leads to an expression that implies that the best
aperture for imaging a point source is one with only a
single pinhole.

The problems of determining an intensity and of
finding a location for a point source are in practice
usually coupled together. Thus our noise term due to
a point source will include5 6 both the variance of the
peak height and the variance of the fluctuations in
which the peak must be located. (Fortunately, with the
URA, the variance of the fluctuations in the vicinity of
the peak is independent of the size of the area for which
it is evaluated.) As we shall see in Sec. III, such a def-
inition gives reasonable results for the optimum den-
sity.

An alternative definition would be the ratio of power
in the true image to the power of the noise in the
reconstructed image. However, as shown in Fig. 2, the
integrated power in the noise might be comparable to
the power in the point source and thus give a deceivingly
low value. Instead the SNR will be defined as a func-
tion of the position in the reconstructed object as

SNRU (i,j)

E(Sij)

JVAR[C(Sij,9ij)] + E E VAR[C(Skl,~9) + VAR[C(D,Sij)]I"/2

(5)

where E(Sij) is the expected (true) value for the ij-point
in the reconstructed object, VAR[C(Sij,Sij)] is the
variance of the contribution of the ijth object point to
the ijth reconstructed point,

E E VAR[C(Ski,Sij)]
k I

is the variance in the vicinity of Sij due to all the sources
within the field of view, and VAR[C(D,Sij)] is the
variance due to the background noise D. We define
[VAR(Sij)]1/2 to represent the denominator of Eq. (5).
Note that Eq. (5) is similar to the square root of the ratio
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Fig. 3. (A) Orientation of the G array and the picture from the Sij
source when calculating the 9ij point in the reconstructed object. (B)

Same as A except- the picture is due to the Ski source.

of the power in the object to the power of the noise, ex-
cept it is taken on a point-by-point basis.

The expected value in the reconstructed object due to
a particular source Sij is simply NSi. The N arises
from the fact that we defined the SPSF in Paper 1 as A
* G with a central height of N. Of course, we could
have divided the SPSF by N to obtain a delta function
with a height of unity so that the reconstructed image
would be normalized to that which would be seen
through a single opening. However, we wanted to
normalize the reconstructed object to an image with an
intensity commensurate with the actual open area of the
aperture. Such a normalization also simplifies the ex-
pressions that lead to the SNR equation.

In order to calculate VAR ( ij) we must first calculate
E(Sij), the expected value of 9ij. There are three
possible contributors to a point in the reconstructed
object. Certainly Sij will contribute; in addition, there
might be contributions from other sources in the field
of view (for example Skl) and from the background noise
[D in Eq. (2)]. Each contribution will depend explicitly
on the details of the decoding process. Because the
geometry of Fig. 1(B) is assumed, the mosaic aperture
will allow a smaller picture than might be assumed from
Eq. (1). Since the Fig. 1(B) geometry is a nonstandard
implementation, details of the correlation in Eq. (2) and
its effect upon the SNR will be specified.

To calculate a term in a correlation of two functions,
one performs a point-by-point multiplication and then
adds up the resulting products. The correlation is a
function of the lag, which is how much one function is
shifted relative to the other function before the point-
by-point multiplication. In the case of decoding a
picture from the Fig. 1(B) geometry, one of these
functions (the picture P) is truncated such that it con-
sists of only an r by s array. Figure 3(A) shows how the
Sij term is calculated. The encoded picture in Fig. 3(A)
is what one would expect from the source Sij, that is, a
shadow cast by an r by s section of the aperture offset
from the center of the aperture [see Fig. 1(B)]. As
mentioned above, an offset r by s section will be a cyclic
permutation of the basic aperture pattern. We will
denote that particular cyclic version as A U. (For the
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purposes of this paper, subscripts will be used to denote
an element of an array, whereas superscripts will be used
to denote an array function.) The picture from the Sij
source (i.e., pi]) will have an expected value of Sij*
Ai.

Figure 3(A) also shows the orientation of the G array
for calculating the Sij term. The G array has been
lagged with respect to the aperture to correspond to the
Sij term in the correlation in Eq. (2). Because P is zero
outside its r by s region, only the r by s section of the G
array shown in Fig. 3(A) will contribute to Sij. That
section, called Gii, is related to Aii by an equation
similar to Eq. (4). In Fig. 3(A), Sij is obtained by adding
up the products of all the Gii and pi] elements that are
vertically aligned (i.e., the point-by-point multiplica-
tion). The contribution of the Sij element of the source
to the Sij element of the reconstructed object is, there-
fore,

C(ijSij) = E E PUJVGLUjv.
u v

C(Sij,3ij) is a weighted sum of the elements of I
The nonzero terms of pi] are random variables wit]
mean of Sij and a variance of Sij (assuming Poiss
statistics). Thus, the expected value of C(Sij,8ij) is ji
the sum of the weighting coefficients (G") times 
expected value of PJ J, that is,

E[C(SijSij) = S9 E_ E AzjvGiujV
U V

Referring to Fig. 3(A) to evaluate Eq. (7), we find tl
of the rs terms in 'Aii, N of those terms are one, a
each is aligned with a one in the Gii array. Because I
remaining r-s - N terms in Aii are zero [each aligr
with a M/(M - N) term in G i], they do not contribi
to the summation in Eq. (7). Therefore, Eq. (7) 1
comes

E[C(SijSij) = NSi1.

Figure 3(B) will be used to calculate the expect
contribution of the Skl source to the 9ij term. ThE
function is the same as in Fig. 3(A), but the picti
function now corresponds to an off-axis source Skl, ti
is, its expected value is Skl-Akl. Following argumei
similar to above, the expected contribution of Sk to
is

E[C(SkI,Si9)] = Ski E E AU'VG.Jo
U V

(6)

all k, 1. It is now clear why we chose the value M/(M -
N) in Eq. (4); it was chosen after knowing the form of
Eq. (10) in order to eliminate the contributions from the
other sources.

The final possible contributor to 8ij is the detector
noise term D in Eq. (2). The array D contains the
background noise, that is, the signal that would be
present even if the aperture were completely opaque.
Dark currents, electronic noise, cosmic rays in propor-
tional counters, and/or fog on film are examples of the
types of background noise being considered. Assuming
such noise is uniform across the detector, we define B
as the average number of false counts per element of the
picture array. Therefore, DUU = B, and the expected
contribution of the D to Sij is

E[C(D,9ij)I = A, A DUVGui = B E E GZ V

=B* [N 1 + (rs -N)M/(M-N)], (11)

which, for the arrays of Paper 1, is just B.
We can now total all the contributions to sij. The

term E[C(D,9ij)], which is constant for all ij, adds only
a removable dc level, which will not effect the SNR.
Since none of the other sources except Sij contribute,
we obtain

E(Sij) = NSij + removable dc term. (12)

Once E(Sij) is known, the denominator of Eq. (5) can
be evaluated. Because E(Sij) is the same (to within a
removable constant) as E(Sij), the VAR terms in Eq.
(5) will depend only on the fluctuations of Sij and the
background caused by the quantum noise.

Since Sij is equal to a sum of weighting factors (G')
times a random variable (Pi J), the variance of that sum
will be the sum of the square of the weighting factors
times the expected variance of the random variable
(SijA' iv, assuming Poisson statistics). Following similar
arguments that led to Eq. (8),

VAR[C(Si,9ij)] = NSi1 . (13)

Iret Similarly, the variance caused by all the sources and
iat the background are, respectively [cf. Eqs. (10) and
.its (11)],
S9ij

VAR[C(SklSi)] = Skl[M. 12 + (N - M)(M/M - N)2 ],

(14)

(9) VAR[C(D,ij)] -B = [N- 12 + (rs - N)(M/M - N)2]B.

At this point the special properties of the URA play an
important role. Regardless of the values of k, I and i,
j (as long as k, I are not equal to i, j), there will be N
nonzero terms in Aki (all equal to unity), and exactly M
of these terms will be aligned with a one in Gii. The
remaining N-M nonzero terms will always be aligned
with the M/(M - N) terms in Gii. Thus, Eq. (9) be-
comes

E[C(Skl,Sij)] =Skl[M* 1 + (N-M) *MI(M - N)] = 0, (10)

and there will be no expected contribution to 9ij from
any of the other resolution elements of the source. The
crucial attribute of the URA is that Eq. (10) is true for

Using Eqs. (13) and (14) in Eq. (5) gives

SNRU (i) =
NSij

-, (15)

( NSi+ MN +XB1N-MT
where IT is the integrated intensity of the source

E E Skl.
k 

If the geometry of Fig. 1(A) is used instead of Fig.
1(B), by following similar arguments, one can show that
the only difference in Eq. (15) is that X is increased by
the ratio of the detector area to r-s.
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Fig. 4. Orientation of the G array and the picture from the SkI source
when calculating the Sij point in the reconstructed object. The

random array geometry of Fig. 1(A) is assumed.

It would be instructive to perform the analogous
calculation using a random array for the aperture. The
geometry of Fig. 1(A) is assumed as well as a balanced
correlation decoding technique (see Paper 1). The
expected contribution of the Sij to oij will remain NSij,
but now there will be a net contribution from the other
sources in the field of view. For example, Fig. 4 shows
the picture array from some Skl source. Because of the
geometry, the contribution to the total picture (i.e., the
detector) is an r by s region which is smaller than the
total picture. In calculating the Sij point, the G array
is lagged with respect to the picture and will be aligned
with only a portion of the pkl pattern. The area in
common is approximately a, where a is equal to (r - i
- k I) times (s - 1i - I ). If we define the density of the
array to be p = Nirs, the area of overlap will have ap-
proximately pa nonzero (unity) terms. We now define
'y (roughly equal to p2 a) to be the number of the pa
terms that are aligned with ones in the G array and 
(roughly equal to pa - p 2a) to be the number aligned
with the p/p - 1 terms in G [see Paper 1, Eq. (13)]. The
expected contribution of Skl to 9ij in the random array
case is therefore

E[CR(Ski,Sij)I = [ 1 + 1P/(P - 1)]Ski flSl. (16)

From Paper 1, is recognized as just one of the side-
lobes in the SPSF, A * G. will vary from point to
point causing artifacts that mimic noise. (In Paper 1
we referred to these artifacts as inherent noise, which,
in retrospect, was probably a misleading choice of ter-
minology.) The artifacts cause 9ij to deviate system-
atically from E (Sij) (in addition to randomly), and the
variance in Eq. (5) becomes very large. In fact, the ar-
tifacts are the dominant source of error in the recons-
tructed object and constitute the basic limiting factor
in coded aperture imaging without URAs. The artifacts
are proportional to the signal; thus, their contributions
to the variance [relative to E(Sij)] are not changed by
a longer exposure or a reduction of the background.
The SNR for the non-URA case will have a limiting
value (usually very low), which is set by the artifacts.

The similarity between Eqs. (10) and (16) indicates
that the origin of the URA's advantage lies in the fact
that Eq. (10) gives a zero all the time, whereas in Eq.

(16), fl is roughly zero (but not exactly zero). The
nonzero a in Eq. (16) means that there will be cross talk
between the signals in different parts of the recons-
tructed object resulting in artifacts. The URA pro-
duces no cross talk between the signals in the object, but
there is noise cross talk between different points. The
noise cross talk gives rise to the IT term in the denom-
inator of Eq. (15). In non-URA systems, the artifacts
dominate the SNR and form the basic limiting feature
of coded aperture imaging. The URA removes this
limitation, and the new basic limitation is orders of
magnitude smaller. In the URA systems the new lim-
itation depends on whether the stronger signal gained
by the larger open area (relative to a single pinhole) is
offset by the [MN/(N - M)]IT term in the noise [see Eq.
(15)].

111. Optimum Aperture Transmission

In this section, we investigate the effect of varying the
transmission or density of the array. We make the fol-
lowing approximations and definitions:

p -NI(r s), 41ii SiilIT, (17)

M p2(r -s), (--B1IT.

Substituting Eqs. (17) and (14) into Eq. (15) gives

SNRUi(ij) = (1-p) 1/2Pjj(r.s.IT)" 2 (18)
[p2(1 - 0,j) + p(ij + ()]1/2

Equation (18) gives the SNR for the ijth point pri-
marily as a function of the density and two dimension-
less variables. is the ratio of the background to IT, the
integrated intensity of the source, and 4 is the ratio of
the source under consideration (Sij) to IT. These two
dimensionless variables can in general parameterize any
source. We wish to find the density (as a function of t
and 4') for which the SNR is a maximum. From Eq.
(18), one can show that the optimum density is

PT
[(Vlj + )2 + ( - Aj)(ij + t)]1/2 - (ij + t)

1 - ij
(19)

Figure 5(A) shows the optimum density as a function
of 4 for select values of t. Because t is the ratio of the
background noise in one picture element to the inte-
grated intensity (through a single opening) of the entire
field of view, t will usually be very small. Values of 10-5
are not unusual. However, certain situations in x-ray
astronomy might have t as large as 1. Figure 5(A)
shows that for small values of 4 and normal values of t
(<0.1), the optimum SNR is often obtained by an ap-
erture with a density much less than /2. (Unless the
source consists of a few point sources, will also nor-
mally be quite small, -0.02.) Fortunately, the effects
of using a density of 1/2 are not severe. Figure 5(B)
shows R as a function of 4 and #, where R is the ratio of
the SNR with p = 1/2 to the SNR with p = PT. In no case
will the SNR resulting from using a density of 1/2 be less
than 70% of the SNR with an optimum density. It is
fortunate that a nonoptimum density of /2 does not
produce severe effects because at this time the only 2-D
URAs are those discussed in Paper 1, and they always
have a density of 1/2.

3566 APPLIED OPTICS / Vol. 17, No. 22 / 15 November 1978



0.2 0.4

0.2 0.4 0.6

0.6 0.8 1.0

I I I I I 

I ,=

REDUCTION IN THE
MUM SNR WHEN USING
'2

1
.00.8

Fig. 5. (A) Optimum density of the aperture as a function of the
relative intensity of a point in the source for select values of the
detector background noise . (B) The ratio of the SNR with a
density of 1/2 to the SNR with the optimum density as a function of
p and t. Note that using a density of 1/2 never causes a large effect.

Gunson and Polychronopulos7 have suggested a 1-D
x-ray system involving arrays similar to the URA.
These 1-D arrays can have several densities, and they
can be developed into 2-D URAs (Gunson; private
communication). However, as Fig. 5(B) shows, this
probably will not be necessary because the advantage
gained will always be small. On the other hand, a lower
density would reduce the count rate, which is an im-
portant limiting factor in Anger cameras and propor-
tional counters.

Gunson and Polychronopulos7 also proposed an op-
timum density equation. Their equation, however,
seems to agree with ours only if q4 is equal to zero. In
particular,, for point sources and low backgrounds (-
0), their equation predicts an optimum density near
zero, whereas it is clear that 1/2 gives a much better
image. This problem stems from the fact that they
include the fluctuations of the background but not the
peak height [see discussion of Eq. (5)].

Even though the arrays with densities of 1/2 give SNRs
near the optimum value, this should not be taken to
indicate that, the resulting image will have higher quality
than that of a single pinhole. Figure 5(A) suggests that
as and 4' go to zero, the aperture should become a
single opening (i.e., p approaches zero). This implies
that for t and 4 near zero, the URA system will not do
better than a single pinhole.

IV. Predicted Performance for the URAs of Paper 1

In this section, we will investigate the relative merit
of the URA system. The URAs of Paper 1 always have
p approximately equal to 1/2 and M equal to N/2. Under
these conditions, Eq. (15) becomes

SNR'(i) = N"S- -N'20)I'
1SuxJ) =(Sj + IT + 2B)'/2 = (1 + 24 + 4,.)1/2 (20)

Equation (20) should be used to predict the perfor-
mance of a URA system.

To obtain a measure of the relative merit of the URA
system, the URA image will be compared with the image
obtainable by a single pinhole camera. Although we
will be specifically considering a single pinhole, it should
be realized that the SNR from a single pinhole is com-
parable with that from a rastering collimator or an
imaging (i.e., diverging pencil beams) collimator. This
approach has been the standard method of comparison
for coded aperture imaging. 2 5-7

A comparison between the URA and a single pinhole
can at times be misleading. A larger SNR for the URA
does not necessarily mean that it is the best system to
use in a particular situation. Often a more sophisti-
cated imaging system than a single pinhole might be
better than the URA system. For example, the grazing
incidence telescope concentrates the x rays such that
a small detector (therefore less background) can be
used. However, the grazing incidence telescope is in-
effective above 3 keV, whereas the URA will be effective
as long as closed portions of the aperture remain
opaque.

Some systems operate in two stages. They have a set
of coarse collimators that locate the source and then
direct a set of fine collimators to image it (foveal sys-
tem). In this manner, the instrument does not have to
image the entire region to locate the source, rather it just
needs to image (at the fine resolution) an area typical
of the sources under consideration. The foveal system
necessitates a splitting of the available space for the
instrument between the coarse and the fine collimators.
Therefore, relatively less collecting area can be dedi-
cated to the imaging of the source at the fine resolution.
An additional disadvantage of the foveal system is that
it is ineffective with sources which vary on a time scale
comparable with the time required to direct the set of
fine collimators.

Modulation collimators (e.g., Oda8) are similar to
coded aperture imaging systems, except they modulate
the signal in time rather than spatially. However, they
become ineffective with extended objects and transients
that vary on a time scale comparable with the time scale
of motion for the modulation collimator.

The most meaningful comparison with the pinhole
image will be for sources that cannot take advantage of
the more sophisticated imaging systems. In particular,
the most appropriate comparison is for high-energy (>3
keV) extended or transient sources. For other sources,
such a comparison will give us a basis for further (more
detailed) comparisons.

The SNR for a single pinhole is (assuming Poisson
statistics)

'P-j'IT 12

SNR,(ij) = = - (21)
(Se, + B)'1/

2 (0pj + ~)112
The ratio of the SNR for the URA to that of the single
pinhole is referred to as the figure of merit or the mul-
tiplexing advantage
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Fig. 6. Predicted SNR of a URA system and a pinhole camera for
a source described in the text. Note that the improvement for the
brighter points in the source ( large) is much better than for the

low-intensity points.

SNRU = ('Pi + 0)- 1/2

i SNR [ 2 + ij + 1 (22)

From Eq. (22), the maximum improvement is (N/2)1/ 2 .
This is lower than the often quoted improvement of x/N
because the high dc background associated with auto-
correlation analyses (see Paper 1) has been subtracted
off in order to give the actual intensity of the object.
The improvement is VN if the dc background is not
subtracted off. Since N will probably be as large as 104
or 105, there will be a net advantage even if 4' and are
as small as 0.05. The URA will be superior for a col-
lection of point sources, or extended sources (especially
those with a patchy appearance), and when the detector
background is high.

We now briefly describe several possible applications
and compare for each the predicted performance of the
URA to a single pinhole. To be fair, the competing
systems should use the same resources. Thus, it is as-
sumed that they will operate with the same size detector
for the same period of time. The single pinhole camera
has an optimum configuration when the image from the
entire field of view just fills the detector area, because
this results in a maximum collecting area per resolution
element. Since distances from the detector to aperture
and aperture to object are assumed to be the same in
both systems, the image from a single opening in the
URA system will also just fill the area of the detector.
Considering the rules for implementation of the URA
(see Paper 1), the field of view should consist of r-s
resolution elements.

X-ray images of the sun (e.g., Underwood et al. 9) and
images of laser implosion pellets (e.g., Godwin0 ) are
morphologically similar. In both cases there is a region
of possible emission (for example, the disk of the sun)
that defines the field of view with the rs resolution el-
ements. However, at any one time, only a fraction of
the field of view is actually emitting, giving the sources
a patchy appearance. When a solar flare occurs, only
a fraction f will have appreciable emission. Although
4 will probably have a wide range of values, will be
-4/([rs), and the advantage [assuming is small in Eq.
(22)] of using the URA will be about (2f)-1/2. For the

sun, F might be as large as 10, meaning a 100 times re-
duction in the time it takes to obtain an image with a
particular SNR.

The improvement of the URA over the single pinhole
is relatively greater for the bright points than it is for the
low-intensity points. The denominator of Eq. (15) (i.e.,
the noise) is virtually independent of the position in the
reconstructed object; thus, the bright points have the
same noise level as do the low-intensity points. In
contrast, the single pinhole noise is directly related (by
Poisson statistics) to the intensity of the source within
the resolution element under consideration. For this
reason we explicitly defined Eq. (22) as a function of the
position in the reconstructed object. No one number
will characterize the improvement over the single pin-
hole; rather, the bright points will always have a better
improvement F than the weak points.

As an example, consider a system with N equal to 882
(r = 41, s = 43) and a source that consists of 10 points
with = 0.017, 20 points with 4 = 0.013,40 points with
4 = 0.0085, 130 points with = 0.0017, and the rem-
aining points (1563) have equal to zero. Figure 6
shows the predicted performance of the URA and the
single pinhole. We have assumed that t is zero (this will
favor the single pinhole) and that IT is 104. Although
the URA and single pinhole give comparable SNRs
when is small, the URA has imaged the bright points
comparably better than the low-intensity points.

Figure 6 shows that one number cannot characterize
the improvement obtainable by the URA system. In
fact, the estimate that F is (2f)-1/2 is usually a lower
limit. For the above example, f is approximately
200/1763, which gives 2.1 as an estimate of the im-
provement. Figure 6 shows an advantage of 1.21 for the
weakest poins ( = 0.0017), and that advantage grows
to 3.85 for the brightest points ( = 0.017). In most
cases, (2f)-1/2 will be close to a lower limit for the im-
provement. To actually determine the relative merit
of a URA system, plots similar to Fig. 6 must be gener-
ated for the source being considered.

In both solar and laser-fusion imaging, the diagnostics
are most sensitive to the location of the bright points.
A URA system will be able to provide a larger im-
provement at the locations in the image where that
improvement will do the most good. Thus, the URA
system should be well suited to both solar and laser-
fusion imaging.

There are several possible applications of coded ap-
erture imaging in the medical field.11 Typically, a ra-
dioisotope is injected into a patient, and its eventual
presence or absence in various parts of the body is the
basis for a diagnosis. The applicability of the URA to
medical sources depends on how the radioisotope dis-
tributes itself in the patient. We will consider two sit-
uations, one of which would be an unlikely candidate for
the URA (injection of thallium-201 in order to study
cardiac infarcts) and one for which the URA would be
a worthwhile technique (bone scans).

When a patient is suspected of having a cardiac in-
farct, one standard diagnostic method is to inject the
patient with the radioisotope thallium-201, which
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preferentially collects in the blood and muscles of the
heart. Because the site of the infarct contains damaged
tissue, relatively less of the radioisotope will collect
there. The x-ray imaging system should provide the
physician with the location of the infarct by detecting
its lower emission. There are two factors which make
this an unlikely candidate for a URA system. First, a
large fraction of the radioisotope is in other nearby or-
gans and tissue. The total source (heart plus sur-
rounding tissue) will be a source which approximately
fills the field of view uniformly, and thus 4' will be
-1/(r-s). Equation (22) indicates that the resultant
URA image will be inferior to that of the single pinhole
by a factor of about (1/2)-1/2. Second, the diagnosis
depends on the details of the low-intensity region of the
source for which the improvement due to the URA is
relatively small (see discussion of Fig. 6). However,
there are radioisotopes other than thallium-201, which
will preferentially collect in the infarct, thus mitigating
these problems.

In contrast to the above case, bone scans should be
a good candidate for a URA system. Because the
skeleton takes up a small fraction of the body and there
are radioisotopes which strongly prefer bone structure,
a bone scan would involve a source with 4 significantly
larger than 1/(r.s). Equation (22) predicts that the
URA will provide a better image than a single pinhole
camera. In addition, many bone diseases are charac-
terized by excessive absorption of the radioisotope; thus,
the diagnosis will depend on points in the object that
have the largest improvement over the single pinhole.

The above comparisons might be unfair to the single
pinhole. In many medical applications a converging
collimator combined with an Anger camera could be
placed close to the patient and thus improve the SNR
because there would be a larger number of received
counts due to a smaller inverse square of the distance.
The URA has to be farther away to avoid a large mag-
nification constant which reduces the number of reso-
lution elements when the size of the detector is fixed
(see Paper 1).

So far we have only discussed cases where the detec-
tor background noise was assumed to be zero. Equation
(20) shows that if t is large (>0.01), the URA advantage
will be appreciable regardless of 4, that is, regardless of
how extended or complex the source is. This will be
true even if the object fills the field of view; therefore,
for the information received, instrumentation more
sophisticated than the single pinhole probably would
not reduce the advantage of the URA. In many situa-
tions and energy bandpasses, detectors can be built with
small t; therefore, an experiment with high t might be
uncommon. However, in x-ray astronomy it is not
unusual to have sources that are much less intense than
the detector background; thus, the URA will be par-
ticularly effective when used on extended x-ray or
gamma-ray celestial sources.

Another typical situation that occurs in x-ray as-
tronomy is a field of view containing a collection of point
sources. is expected to be on the order of at least 0.01,
and this, combined with the high t expected, means that

a URA system would locate such sources easily. A
particularly important application would be the study
of transient x-ray sources. These sources emit for such
a short time that it is difficult to point a more sophis-
ticated system at them. The combination of a large
field of view yet good angular resolution with the ability
to operate in extreme detector noise makes the URA a
very promising instrument for x-ray astronomy.

Finally several experimental effects which would
tend to decrease the SNR for all types of coded aper-
tures have not been included. When film is used errors
will probably be generated in the densitometer; also,
there could be an alignment problem between the pic-
ture and the densitometer. Fabrication errors in the
aperture could also produce errors in the reconstructed
image. The most serious source of error might be due
to nonuniformity of the detector's spatial efficiency.
Equation (10) represents a balancing of signals over the
entire detector area. If one section of the detector is
more efficient than the rest, artifacts will result.
V. Summary

A SNR equation has been developed [Eq. (18)] to
assist in predicting the performance of the URA. The
SNR expression differs from those developed for other
coded apertures2 4 in that the noise term includes both
the variance of the peak height and the variance of the
fluctuations in which the peak must be located [see
discussion of Eq. (5)]. The SNR has been formulated
as a function of the transmission or density of the ap-
erture, the ratio of the intensity of a resolution element
to the integrated intensity of the source (), and the
ratio of the detector's background noise to the inte-
grated intensity (Q). The optimum density was found
as a function of 4 and [see Eq. (19) and Fig. 5(A)].
Figure 5(B) shows that the use of an aperture with a
density of 1/2 is not a severe limitation because the
nonoptimum arrays with densities of 1/2 never give an
SNR that is more than 30% smaller than the optimum
density. The one exception is when the source produces
an unacceptable count rate in the detector. In that
case, it might be worthwhile to use an array of lower
density. We conclude that the URAs presented by
Fenimore and Cannon3 (Paper 1) can be used in most
situations.

We presented an SNR equation [Eq. (20)] for the
URAs discussed in Paper 1 and compared the URA
system to the single pinhole camera in Eq. (22). Our
conclusions concerning the usefulness of the URA sys-
tem follow.

(1) Because the encoding and decoding process
produces virtually uniform noise in the reconstructed
object, the improvement over a single pinhole is larger
for the bright points than the low-intensity points (see
discussion of Fig. 6).

(2) Although one number generally will not char-
acterize the improvement possible with the URA, a
lower limit is roughly (2f)1/2, where f is the fraction of
the field of view that is uniformly filled by the object.
Because one number will not truly represent the ad-
vantage of the URA, plots similar to Fig. 6 must be
generated for the sources being considered.
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(3) The URA will always give a better image than
that from a single pinhole in the case of a few (10 to 20)
point sources ( > 0.01).

(4) The URA will always give a better image if the
detector background noise is significant ( > 0.01).

In general, the URA will be best suited for locating
and imaging sources that emit from less than one-third
of the field of view, especially if there is significant de-
tector background noise.

The author thanks Harry Barrett and Paul Harper
for helpful discussions and information on the medical
applications. Richard Blake and Michael Cannon were
also very instrumental in the development of this work.
This work was done under the auspices of the U.S. De-
partment of Energy and the National Aeronautics and
Space Administration grant S57094A.
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