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A star is called variable if its brightness changes over time

The variability could be extrinsic, such as eclipse and lensing;
or intrinsic, such as pulsation, flares, accretion variability, or
explosions

The definition depends on the variability amplitude and
timescale: all stars are variable if the measurement accuracy
IS high enough (see e.g. Kepler), or if we could wait long
enough

My thesis is on ‘long-term’ (timescales from days to 100
years) and ‘extreme’ (amplitude>~0.5 mag) variables with
DASCH (Digital Access of a Sky Century@Harvard)



* They are there,
mostly un-explored

1 year 10 yr

« They provide important information about the physical processes
involved, most of which are not clearly understood yet: dust processes,
magnetic cycles of stars, accretion, nuclear burning on WDs...

Variability is the way stars ‘talk’ to us. We want to decipher ‘the
message’ to learn how they work.

« And we do not want to wait another 80+ years to study variations over
100 years (while we do have the data here in the cabinets)
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Introduction to DASCH
Photometry and Defect Filtering

 The Kepler Field
» Planet Host Stars
» Variable Search and Catalog
* Individual Long-term Variables
» Peculiar K Giant Variables
» KU Cyg: a 5-yr Dust Accretion Event
» A 10-yr Nova-like Outburst
« Two Other Post-Thesis Discoveries



Harvard Plate Stacks

Including 83 plate series
(each typically represents
a single telescope)

from 22 observatories

Bring the plates back to Harvard
was not an easy job....

One shipping story that stands out is that of the
freighter SS Robin Goodfellow. On July 25, 1944, while
carrying a shipment of plates from South Africa, it was
torpedoed and sunk by the German submarine U-862in
the South Atlantic. Ironically, the U-862 was transport-

ing valuable cargo to the Japanese, including a shipment
of optical glass. But despite these losses, the surviving
collection at Harvard is still a quarter of the world’s entire
inventory of approximately 2 million plates.

-- Stephen Lieber, Sky & Telescope, Mar 2010



Plate b26816, LMC. Dec 18, 1900, Arequipa, Peru.
Used by Henrietta Leavitt on Cepheid stars.




Pl: Grindlay
Digitize and Measure the Harvard Plates to open the ~100yr TD Window

~500,000 photographic plates
between 1880s-1980s covering the
whole sky (Grindlay et al. 2009).

~500-1000 measurements for each
object with B<14 (up to 18 mag in
some regions) O E—

300 1100 1900 2700 3500 4300 5100

Astrometry: 0.8-3 arcsec

Photometry: 0.1-0.13 mag
(Laycock et al. 2010; Tang et al.
2012c).

Two advantages of DASCH:
v' Long-term variables
v Rare bright variables




DASCH Pipeline

>

>
ZN é‘/\ >
WCS e o -
. Meta-Data
solution 3

pickering

wedge,
multiple
exposures [




Outline

J What | do: Introduction to DASCH

Photometry and Defect Filtering
(Tang et al. 2012c; Laycock, Tang, et al. 2010)

1 What | get - Scientific Results:

 The Kepler Field
» Planet Host Stars (Tang et al. 2012b)
» Variable Search and Catalog (Tang et al. 2012d)
* Individual Long-term Variables
» Peculiar K Giant Variables (Tang et al. 2010; 2012e)
» KU Cyg: a 5-yr Dust Accretion Event (Tang et al. 2011)
» A 10-yr Nova-like Outburst (Tang et al. 2012a)

« Two Other Post-Thesis Discoveries
d Summary



9 annular bins: to correct vignetting
Thousands of stars in each annular bin
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DASCH Photometry

Laycock, Tang, et al. 2010, AJ, 140, 1062
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Local calibration using neighbors with similar magnitudes

To correct the inhomogeneity of plates, Tang et al. 2012¢
we divide each plate into 400 local bins
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Life is not easy...
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To find a real variable is like looking for a needle in a haystack....
Have to get rid of dubious signals
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Tang et al. 2012c
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Tang et al. 2012c
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DASCH Coverage in the Kepler Field




Example light curves:
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* planet host stars

— median of the Kepler field stars
- -1c (16 and 84 percentiles)

26 (2.5 and 97.5 percentiles)

240 with n>=10 |

Good news for the habitability of the plants.




VS Kepler Q1 (33d)
DASCH (1 OOyr) Dwarfs: 0.01% to 1% variations

Giants: 0.01% to 0.1% variations
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Variations on different timescales are probing different
physical processes. Extrapolate does not work, and we
cannot predict the 10-100 yr variation by looking at short

timescale data, even if the data are extremely accurate. The

value of DASCH is not only to discovery (new) variables, but

what's more important, is to study the long-term behavior of
stars and to explore the reasons which drive the variation.



Variable Search in the Kepler Fields
Tang et al. 2012d
Compare the light curve statistics locally in each sub-field

27977 stars in the Kepler field with ngood>=10

all DASCH stars
ASAS variables

280 285 295 300




Table 2

.1: Statistical measurements in the summary table

Parameter

Description

Light curve amplitude and rms:

range_local
range_local2

lightcurverms1

difference between the brightest and the faintest points, minus the sum of their errors
similar to range_local, but after removing the brightest and the faintest points.

light curve rms after 4 iterations of 5& clipping

rms of light curve residuals after de-trending:

lightcurverms?2
lightcurverms3
lightcurverms4

lightcurvermss

de-trended using smooth(x,y,0.4, ‘lowess’)
de-trended using smooth(y,0.8, ‘lowess’)
de-trended using smooth(y,10, ‘sgolay’)

de-trended using smooth(y,15, ‘loess’)

Number of outburst and dip points:

nburst

nburst2

nburst3

nburst4d

number of points > 0.8 mag brighter than the median value

number of points > 0.5 mag brighter than the median value

number of points > 0.4 mag brighter than the median value

number of points > 3o brighter than the median value,

where ¢ is the median value of photometry uncertainty in the light curve
number of points > 0.8 mag fainter than the median value

number of points > 0.5

mag fainter than the median value

number of points > 0.4 mag fainter than the median value

number
number

number

of points
of points

of points

=

2

z

30 fainter than the median value
20 brighter or fainter than the median value

3o brighter or fainter than the median value

Adjacent points in ‘burst’ or ‘dip’:

adjacentburstdip
adjacentburstdip2

adjacentburstdip3

a measure of the number of adjacent nburst3/4 and ndip3/4 points
a measure of the number of > 5 adjacent nburst3/4 and ndip3/4 points

a measure of the number of > 7 adjacent nburst3/4 and ndip3/4 points

Parameters used to remove dubious variables:

magvsracorr
magvsdeccorr
magvslimitingcorr

Malmaquist_factor

correlation coefficient between light curve magnitude and ra

correlation coefficient between light curve magnitude and dec

correlation coefficient between light curve magnitude and plate limiting mag
clipped median DASCH magnitude of 20 deepest plates

— clipped median DASCH magnitude of 20 shallowest plates using ‘good’ points

Malmgquist_factorB similar to Malmquist_factor but also includes defects, low altitude,

uncertain date and second quality plates

Magnitude

CCD 19: 5o outliers of range

K11146627, 19:43:37.8 +48:46:42, CCD19, g=9.73, g-r=1.3, rms=1.4, ASAS AV=4.3
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Example 2: a long-term variable

Han‘man et a/ 2004
CCD 13: 60 outliers of lcrms1-to-lcrms5 ——
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Example 3: adjacent dip points

MN233012397, ra = 9:53:10, dec = 33:53:53, Ngood = 122
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More on it later... .
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Results: 92 Variable Candidates in the Kepler FOV;
50 of them are ASAS variables
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ASAS saturation limit: V~8.5 mag (Pojmanski 2002)



All (28/28) rms=>0.3 mag,
and 92% (34/37) rms>0.25 mag
ASAS variables are found to be variables in DASCH
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DASCH light curve examples

K11125706, 19:0:58.8 +48:44:42, CCD9, g=11.9, g-r=0.51, rms=0.26, ASAS AV=0.55
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The most interesting ones are the ones that
do not fit into common categories

Probably a late-type or post AGB star, with a spectacular 60-yr dust ejection event
Very bright IR source, 0.5-2Jy at 10-50micron (IRAS) ASAS Ic

Phased, P=128.8
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Discovery of new type of variable stars:
3 unusual long-term K giant variables;

Tang et al. 2010, ApJL, 710, L77
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Lightcurves and color evolution of 3 unusual long-term wvariables which were found in DASCH scans near NM4d4., Black dots with
rars are the lightcurves from DASCH, small green dots are the lightcurves from ASAS. Since ASAS data are in V band, while DASCH

es are the B-R color derived from plates with y-axis labeled in the right, and red dashed lines mark the weighted mean B-R
m 1970s to 1980s.



New K giants variables Kepler light curves
in the Kepler field e 1. Strong Starzspscit; moduatior
Tang et al. 2012c MR YA/ AR

DASCH light curves
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K giants in Binaries: Extreme RS CVns

MNZ230030599, ra = 7:36:6.51, dec = 2121411, Ngood = 521
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Single K giant Stars: unknown dust processes?

MN2232130166, ra =7
T

24191, dec = 9:12:32_, NMgood = 169

1910 1920 19320

1940 1950

Year: B =131, B—R = 1.56
M223232191, ra= T:23:44 3, dec = 8:39:55, MNgood

T

- - -

- F -gl -l

Totnd t B . e

- - -
T -i-"'-: 'i-.l --I:-I
- - - - -

- - = - '-'.-‘

="al
-

-
- "

1 1 1
1920 1920 1940 1950 1950
Wear: B =124, B—R = 1.76




Outline

J What | do: Introduction to DASCH

 How | do it: Photometry and Defect Filtering
(Tang et al. 2012c; Laycock, Tang, et al. 2010)

 The Kepler Field
» Planet Host Stars (Tang et al. 2012b)
» Variable Search and Catalog (Tang et al. 2012d)
* Individual Long-term Variables
» Peculiar K Giant Variables (Tang et al. 2010; 2012e)
» KU Cyg: a 5-yr Dust Accretion Event (Tang et al. 2011)
» A 10-yr Nova-like Outburst (Tang et al. 2012a)
« Two Other Post-Thesis Discoveries

d Summary



KU Cyg: 5-yr dust accretion event

Tang et al. 2011, ApJ, 738, 7
Algol-type eclipsing binary
3.85 Mo F star + 0.48 Mo Kalll
(Smak & Plavec 1997)

accretion timescale
Increased mass transfer =>
increased disk mass =>
larger optical depth (dust
extinction and neutral hydrogen
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A peculiar 10-yr outburst

Tang et al. 2012a, ApJ, in press

10 . : : :
(a) JO757 light curve DASCH
@ 11p ! 2
E 12 ! bt | mf 4 ’ ;
> - ¢ -
= LR *+++**+#¢MW K %?W+
13} _
1880 1900 1920 1940 1960 1980 2000
Year

Red: pure giant

£ B S S R T DA T T R N 1 {A)
(b) E :Blue. giant }dlsk + hot spot/}‘E | (c)SEan o Vs - o
F / N\ \ 4 F T T T T rrrTT T T T | L
o 7} i / \‘\} '\ :‘é 2 S § MA -
s LA N s \ ; AT @
L1 /AR N A W/AR ¢ 10°F / Illh NUV excess |
F SO V] L\ 1 - ‘
k E‘/[/E {\\E‘_:‘i’/ E\U/} \}\%\_‘%& % < 10" -_ /'/ *
I it i1 1 e 10 hswss B
- : ! ’.‘u - + 1 >
2L T T o g 1] // WISE = =
"ITRESRV, = PR S I | q10"
. / / NoOY L/ | GALEX
£7 10°F "~ ROSAT 102
E & 10" F P l’
£ N N/ ] : || I ~10°
‘-\ -[,/ \\ _{/ L 1 1 1
2 P S T 10 10" 10'° 10 10"
(s} Q.5 1 1.5 pd v (HZ}

Phase (P=119.14 d, T, ;=55,593.6794)



DASCH J0757, list of properties:

Intensity
[ - ]
o

From atmosphere fitting,

radial velocity & ellipsoidal variation

4000 4500 5000 5500 6000 6500 7000
\Wavelength (Angstrom)

Spectral type
Orbital Period

Eccentricity
M_giant
M_WD
Distance
L_giant

L _hot, quiescence
Mdot

M_B quiescence
M_B outburst

RL lobe filling factor

MOIII
119.18d+-0.07
0.025+-0.01
1-1.3 Mg

~0.6 M

~1 kpc

250 L

~2 L
10 M /yr

0.5-0.8




Light curve of JO757 doesn’t look like the
accretion powered systems, such as

* Nuclear burning?

The outburst profile of JO757 more closely
resembles that of Z And and CI| Cyg, which
are believed to have gone through nuclear
burning powered outbursts (Mikolajewska
2003, et al. 2002). However, Z And and CI
Cyg are hot and luminous during quiescence
(H-burning in both quiescence & outburst).
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Mikolajewska 2010

M, [M,]
0.33 0.48 0.95
I ' I ' I
: thermonuclear runaways E 2 ® —
in symbiotic systems; only 9 symbiotic o R e §
novae known so far (e.g. Kenyon 1986) *;ﬂ 15 o) -
, slow & quiet © - _% .
. q 1 - © ngﬂ Cyg —|
Our object: period 119 days, NO emission 3_'5 | !L | 4"5
lines, NO indication of wind or mass loss
log L, [Lg]
JO757

Table 1. Observed properties of symbiotic novae Iben 2003

Star Distance |Period| Mgy Ly  Rmax (T5gd 7hlue)
[kpc] yr] | (7)  [Le] [Ro] |[yr] [y1]

AG Peg 0.7 226 | 1.6 4000 18 | 60 50
V1329 Cyg 3.7 2.60 § 18000 26 | 15 20
RT Ser 9.4 12.0 25 28000 100 | 25 40
PU Vul 3.2 134 | 25 25000 50 | 10 -
V1016 Cyg 3.9 >15 | 130 36000 6 | 0 >40
HM Sge 2.9 >15 | 100 28000 20 | 4 >20
RR Tel 2.6 >15 | 50 17500 110 | 7 > 30
RX Pup 1.8 \ 2007 ) 40 16000 60 \ 4 9




DASCH JO0757 is a rare and new Kato & Hachisu (2011): all w/ 0.6 Msun WD
class of symbiotic variables: :__ t (yr) [for (a)]

5 10 15

Ilts F3 r\t“ e Orb=13.4 yrs
current photometric and spectroscopic J : § Outt Qrst plateurIp yrs
properties is not different from a normal jo

red giant binary. It would not be picked
out without the capture of its long
outburst in 1940s on DASCH plates.

What sets the nuclear outburst
timescale?

« Companion may play an important
role (Kato & Hachisu 2011): a
closer companion helps drive wind
loss => shorter timescales

« With P=119 days, JO757 is at the
valley between
and novae in close
binaries (P<1 day)
« Missing class of possible SN la
progenitors?
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c
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Outline

J What | do: Introduction to DASCH

 How | do it: Photometry and Defect Filtering
(Tang et al. 2012c; Laycock, Tang, et al. 2010)

 The Kepler Field
» Planet Host Stars (Tang et al. 2012b)
» Variable Search and Catalog (Tang et al. 2012d)
* Individual Long-term Variables
» Peculiar K Giant Variables (Tang et al. 2010; 2012e)
» KU Cyg: a 5-yr Dust Accretion Event (Tang et al. 2011)
» A 10-yr Nova-like Outburst (Tang et al. 2012a)
« Two Other Post-Thesis Discoveries

d Summary



1st example: G8 dwarf binary with variations over decades

ROSAT source, 0.1 cts/s => L(0.1-2.4 keV)=4x10%C erg/s (Sun: Ly~10%7-1028 erg/s)
Also a bright GALEX source, 10 times brighter than a normal G8V
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What is the companion & what powered the outbursts

Strong CaH component, consistent with the Mgb velocity (G dwarf)
60} Red: weak CaH component, antiphase

Q)
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@
=
©
©
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o

If the weak CaH&K component from the companion, then mass ratio: 1:0.67
G8V, M1 =0.8-0.9 Msun, M2 = 0.5-0.6 Msun (most likely a WD)

= a=2-2.1 Rsun; RL1=0.8-0.9 Rsun

= The G dwarf is approximately Roche-lobe filling



2nd example: € Aurigae-like (8 AU disk)?
Eclipsed by a foreground cloud? 4yr x 10km/s = 8 AU

No significant 2MASS (JHK) & AKARI/IRC(9micron) flux excess

42
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What causes the eclipses?

Two eclipses: 1943-1946; 2012-?
Coverage from 1890-1950 & 1970-1990: period = 69/N, N>1 is ruled
out => P=69yr
Similar change in optical and NIR bands => solid body blocking, not
dust extinction

3yr P=69yr

A companion with a huge disk

It is a MOIII star, not a huge-
mass-loss late AGB star; no
mechanism to provide mass

loss to form a disk for its .
companion

It is a MOIII star, not a young
object, its companion is unlikely
to have a protoplanetary disk
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Summary

Photometry achieved 0.1-0.13 mag: photometric calibration, color-term fitting,
defect filtering and local calibrations using neighbor stars with similar magnitudes
(Tang et al. 2012c; Laycock, Tang, et al. 2010, AJ)

Kepler Planet Host Stars: No variations found (Tang et al. 2012b, AJ, submitted)

Variable Search and Catalog: effectively found most large amplitude variables
(RMS>0.25 mag) (Tang et al. 2012d)

Peculiar K Giant Variables with ~1 mag variations over decades: provide new
insights into dust formation processes or extreme magnetic activities on stars
(Tang et al. 2010, ApJL; 2012e)

A 5-yr dust-accretion event in KU Cyaq: first evidence of dust transportation and
evaporation in an accretion disk (Tang et al. 2011, ApJ)

A 10-yr Nova-like outburst in a peculiar symbiotic system, may be powered by
nuclear burning without significant mass loss and thus the WD could grow. (Tang
et al. 2012a, Apd, in press)
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