The AstroStat Slog » kriging http://hea-www.harvard.edu/AstroStat/slog Weaving together Astronomy+Statistics+Computer Science+Engineering+Intrumentation, far beyond the growing borders Fri, 09 Sep 2011 17:05:33 +0000 en-US hourly 1 http://wordpress.org/?v=3.4 [MADS] Kalman Filter http://hea-www.harvard.edu/AstroStat/slog/2009/mads-kalman-filter/ http://hea-www.harvard.edu/AstroStat/slog/2009/mads-kalman-filter/#comments Fri, 02 Oct 2009 03:18:32 +0000 hlee http://hea-www.harvard.edu/AstroStat/slog/?p=1397 I decide to discuss Kalman Filter a while ago for the slog after finding out that this popular methodology is rather underrepresented in astronomy. However, it is not completely missing from ADS. I see that the fulltext search and all bibliographic source search shows more results. Their use of Kalman filter, though, looked similar to the usage of “genetic algorithms” or “Bayes theorem.” Probably, the broad notion of Kalman filter makes it difficult my finding Kalman Filter applications by its name in astronomy since often wheels are reinvented (algorithms under different names have the same objective).

When I learned “Kalman filter” for the first time, I was not sure how to distinguish it from “Yule-Walker equation” (time series), “Pade approximant, (unfortunately, the wiki page does not have its matrix form). Wiener Filter” (signal processing), etc. Here are those publications, specifically mentioned the name Kalman filter in their abstracts found from ADS.

The motivation of introducing Kalman filter although it is a very well known term is the recent Fisher Lecture given by Noel Cressie at the JSM 2009. He is the leading expert in spatial statistics. He is the author of a very famous book in Spatial Statistics. During his presentation, he described challenges from satellite data and how Kalman filter accelerated computing a gigantic covariance matrix in kriging. Satellite data of meteorology and geosciences may not exactly match with astronomical satellite data but from statistical modeling perspective, the challenges are similar. Namely, massive data, streaming data, multi dimensional, temporal, missing observations in certain areas, different exposure time, estimation and prediction, interpolation and extrapoloation, large image size, and so on. It’s not just focusing denoising/cleaning images. Statisticians want to find the driving force of certain features by modeling and to perform statistical inference. (They do not mind parametrization of interesting metric/measure/quantity for modeling or they approach the problem in a nonparametric fashion). I understood the use of Kalman filter for a fast solution to inverse problems for inference.

]]>
http://hea-www.harvard.edu/AstroStat/slog/2009/mads-kalman-filter/feed/ 0
[MADS] Kriging http://hea-www.harvard.edu/AstroStat/slog/2009/mads-kriging/ http://hea-www.harvard.edu/AstroStat/slog/2009/mads-kriging/#comments Wed, 26 Aug 2009 02:19:26 +0000 hlee http://hea-www.harvard.edu/AstroStat/slog/?p=3435 Kriging is the first thing that one learns from a spatial statistics course. If an astronomer sees its definition and application, almost every astronomer will say, “Oh, I know this! It is like the 2pt correlation function!!” At least this was my first impression when I first met kriging.

There are three distinctive subjects in spatial statistics: geostatistics, lattice data analysis, and spatial point pattern analysis. Because of the resemblance between the spatial distribution of observations in coordinates and the notion of spatially random points, spatial statistics in astronomy has leaned more toward the spatial point pattern analysis than the other subjects. In other fields from immunology to forestry to geology whose data are associated spatial coordinates of underlying geometric structures or whose data were sampled from lattices, observations depend on these spatial structures and scientists enjoy various applications from geostatistics and lattice data analysis. Particularly, kriging is the fundamental notion in geostatistics whose application is found many fields.

Hitherto, I expected that the term kriging can be found rather frequently in analyzing cosmic micro-wave background (CMB) data or large extended sources, wide enough to assign some statistical models for understanding the expected geometric structure and its uncertainty (or interpolating observations via BLUP, best linear unbiased prediction). Against my anticipation, only one referred paper from ADS emerged:

Topography of the Galactic disk – Z-structure and large-scale star formation
by Alfaro, E. J., Cabrera-Cano, J., and Delgado (1991)
in ApJ, 378, pp. 106-118

I attribute this shortage of applying kriging in astronomy to missing data and differential exposure time across the sky. Both require underlying modeling to fill the gap or to convolve with observed data to compensate this unequal sky coverage. Traditionally the kriging analysis is only applied to localized geological areas where missing and unequal coverage is no concern. As many survey and probing missions describe the wide sky coverage, we always see some gaps and selection biases in telescope pointing directions. So, once this characteristics of missing is understood and incorporated into models of spatial statistics, I believe statistical methods for spatial data could reveal more information of our Galaxy and universe.

A good news for astronomers is that nowadays more statisticians and geo-scientists working on spatial data, particularly from satellites. These data are not much different compared to traditional astronomical data except the direction to which a satellite aims (inward or outward). Therefore, data of these scientists has typical properties of astronomical data: missing, unequal sky coverage or exposure and sparse but gigantic images. Due to the increment of computational power and the developments in hierarchical modeling, techniques in geostatistics are being developed to handle these massive, but sparse images for statistical inference. Not only denoising images but they also aim to produce a measure of uncertainty associated with complex spatial data.

For those who are interested in what spatial statistics does, there are a few books I’d like to recommend.

  • Cressie, N (1993) Statistics for spatial data
    (the bible of statistical statistics)
  • Stein, M.L. (2002) Interpolation of Spatial Data: Some Theory for Kriging
    (it’s about Kriging and written by one of scholarly pinnacles in spatial statistics)
  • Banerjee, Carlin, and Gelfand (2004) Hierarchical Modeling and Analysis for Spatial Data
    (Bayesian hierarchical modeling is explained. Very pragmatic but could give an impression that it’s somewhat limited for applications in astronomy)
  • Illian et al (2008) Statistical Analysis and Modelling of Spatial Point Patterns
    (Well, I still think spatial point pattern analysis is more dominant in astronomy than geostatistics. So… I feel obliged to throw a book for that. If so, I must mention Peter Diggle’s books too.)
  • Diggle (2004) Statistical Analysis of Spatial Point Patterns
    Diggle and Ribeiro (2007) Model-based Geostatistics
]]>
http://hea-www.harvard.edu/AstroStat/slog/2009/mads-kriging/feed/ 0