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Flares

• Stellar flares

- Impulsive events that release large bursts of energy over short timescales.
- The aftereffects of solar flares include spectacular aurorae, interference in
satellite communications, expansion of the thermosphere, and in particularly
strong cases could cause widespread electrical grid disruptions and blackouts.

- They occur (i) when magnetic energy stored in twisted flux tubes is released
into the hot plasma of the stellar corona (ii) in the “Active Regions”, where
strong magnetic fields are present, around sunspots.

• Why Studying stars

- An excellent way to improve our understanding of the Sun: how the Sun
would behave if it had a different mass/age/composition, or rotational rate,
or magnetic dynamo strength, or even if it had a close-in giant hot Jupiter;

- Pin down parameters and processes that control the nature of the corona;
- Here we develop a method to detect flare occurrences in TESS light curves in
order to gain insight into flare distributions, cadence, and onset.
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Our contribution

We have studied several white light flares from the Transiting Exoplanet
Survey Satellite (TESS), and modeled them via a GARCH process.

• Our goals

- define the modeling process
- analyze light curves obtained from TESS to characterize the different stars
- explore differences with spectral type, with stellar age and activity level, and
even whether tidal and magnetic interactions with nearby exoplanets
changes flaring behavior

• GARCH process

- Applied extensively in econometrics to understand stock price fluctuations,
and we show that stellar flares can be described by the same mathematics.

- Model the so-called volatility index, and we find that it is a good guide to
flare occurrence. This is a remarkable new result, and promises to open new
avenues of exploration, to understand the precise nature of flare onset.
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Our novel semi-parametric approach

Our approach combines a non-parametric method that removes the harmonic
trend with a parametric method that detects the flares

1 Non-parametric step
We remove the trend using a time-varying harmonic fit combined with a
NP-test for the local variance, so to capture changes in the deterministic
amplitude of the light curve.

2 Parametric step
We enlighten the analogy between the stochastic part of the light curves and
GARCH processes, and detect the flares by exploiting the parametric
structure.

- We demonstrate that flares can be detected as significantly large deviations
from the baseline.

- We apply the method on exemplar light curves from flaring stars
TIC13955147 (s4, s5 and s31) and TIC269797536 (s2).



A snapshot of our novel method
TIC13955147 s-31-II
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Deterministic Trend: Time-varying Harmonic Oscillations
Stochastic Errors: Conditional Heteroskedastic Volatility
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Data: TESS Light Curves



Our Statistical Model

Our novel model is the sum of a non-random trend and a stochastic error:

Yt = µ(t) +Xt, t = 1, . . . , n

- The function µ(t) is a deterministic, periodic time-trend that allows for
time-varation in its coefficients, whereas

- the errors Xt follow a GARCH model

Xt = σtεt, εt
iid∼ N (0, 1),

where the stochastic conditional variance σ2
t = Var(Xt|It) is an ARMA(p, q)

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j
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Deterministic Trend: Time-varying Harmonics

Data:

• random observed vector Y = (Y1 , Y2 , . . . , YN
)′

• time vector t = (t1 , t2 , . . . , tN )′

Modulation model

Yi =

K∑
k=1

{g
1k
(ti) cos(wk

ti) + g
2k
(ti) sin(wk

ti)}+X
i
, i = 1, . . . , N,

• smooth time-varying amplitudes

• K number of harmonics

• X = (X
1
, . . . , X

N
)
′
follow a GARCH(p, q) process

We estimate the parameters using penalized B-splines (Motta et al., 2002)
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Stochastic Errors: Heteroskedastic Volatility

A GARCH(p, q) model has a multiplicative form

Xt = σtεt, εt ∼ N(0, 1) ,

where

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j , t ≥ max(p, q) ,

with α0 > 0, α1, . . . , αp ≥ 0, β1, . . . , βq ≥ 0.

Properties

- E(Xt|Xs, s < t) = E(Xt) = 0

- E(XtXs) = 0, s ̸= t

- E(X2
t |Xs, s < t) = σ2

t = α0 +
∑p

i=1 αiX
2
t−i +

∑q
j=1 βjσ

2
t−j

- E(X2
t ) = α0/(1−

∑p
i=1 αi −

∑q
j=1 βj)

- X2
t ∼ ARMA(p, q) and ρ

X2 (h) ≥ 0 for all h
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Stochastic Errors: Heteroskedastic Volatility
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Heteroskedastic Volatility
Stylized facts of financial resturs

• heavy tailed
Pr(|X| > x) ∼ Cx−α, 0 < α < 4

• uncorrelated
ρ
X
(h) near 0 for all lags h > 0

• |Xt| and X2
t have slowly decaying autocorrelations

ρ|X|(h) and ρ
X2 (h) converge to 0 slowly as h increases

• stochastic and persistent volatility

− large (small) fluctuations in the data tend to be followed by fluctuations of
comparable magnitude

− this is reflected by GARCH models through the correlation in the sequence
{σ2

t } of conditional variances



Outline

Flares

Our Statistical Model
Deterministic Trend: Time-varying Harmonic Oscillations
Stochastic Errors: Conditional Heteroskedastic Volatility

Our novel semi-parametric approach

Data: TESS Light Curves



A semi-parametric approach
NON-PARAMETRIC de-trend

Main idea: examine time-varying volatility within its local neighborhood.

- Given the residual value Xt = Yt − µ(t), we test

H0 : Xt|It ∼ WN(0, σ2
0) vs Xt|It ∼ WN(0, σ2

t ).

Under H0, Var(Xt|It) = σ2
0 ∀t. Under H1, Var(Xt|It) = σ2

t > σ2
0 for some t.

- H0: Xt = σ0εt ∼ N (0, σ2
0) for all t, whereas H1 : Xt|It ∼ N (0, σ2

t > σ2
0).

Under H0, X
2
t /S

2
t ∼ F1,n−1

d→ χ2
1(α) as n → ∞.

-
(
Xt/St

)2
> χ2

1(α)
is equivalent to |Xt|/St > QHN

(α), where α = Pr
(
H > QHN

(α)

)
,

H being a Standard Half-Normal random variable.

- Test-statistic: |Xt|/St, where St is a robust, time-varying estimator of σt.
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A semi-parametric approach
NON-PARAMETRIC de-trend

- Our ejection region: { |Yt − µ(t)| > St Q
HN
(α)}.

- We reject the H0 if Pr
(
H > QHN

(α)

)
< α, where the tuning parameter α (the

significance level of the test) is often set by the astronomy ex-ante.

- We estimate α rather than assigning an arbitrary valued to this parameter:
we define an upper bound αmax and then select, among those values of the
above probability that are smaller than αmax, the largest one.

- The presence of flares makes µ̂ biased. For this reason, we (detect and) delete
the flares from Y and then re-fit µ to the ‘flares-filtered’ data.
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A semi-parametric approach
PARAMETRIC flares-detection

σ2
t = α0 +

p∑
i=1

αiσ
2
t−iε

2
t−i +

q∑
j=1

βjσ
2
t−j , t ≥ max{p, q}

Parametric test statistics based on the past conditional volatility

- Time-varying generalized χ2 to model the conditional variance σ2
t :

Gt =

p∑
i=1

wt,iε
2
t−i + Ct,

with wt,i = αiσ
2
t−i and Ct = α0 +

∑q
j=1 βjσ

2
t−j .

- Test statistics: Ĝt = σ2
t |σ̂2

It
. We decide that {t,Xt} is an extreme residual if

Pt = Pr(Ĝt > σ2
t ) ≤ α . (1)

- The inequality in (1) is our novel definition of a flare.

- We only retain those with positive residual, i.e., we decide {t, Yt} is a flare if:

1{Pt<α} × 1{Xt>0} = 1
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Our algorithm

Non-parametric detrending
Define X(0) = Y (0) − µ(0) and α(0) = αmax

for i in 0 : (I − 1) do

for all t in 1:n do π
(i)
t = Pr

(
H >

|X(i)
t |

S
(i)
t

)
if π

(i)
t < α(i) then
delete {t : t+ 9, Yt : Yt+9} (20 minutes forwards)

else
Y

(i+1)
t = Y

(i)
t

X(i+1) = Y (i+1) − µ(i+1), and α(i+1) = max
t:π

(i)
t <α(i)

π
(i)
t

Parametric Flares-detection
Fit a GARCH(p, q) to X(I) = Y (0) − µ(I)

for all t in 1:n do Pt = Pr[Gt > σ2
t ]

if 1{Pt<α} × 1{X(I)
t >0} = 1 then

Define Ft = Yt

α is guaranteed to decrease over i because the inequality π
(i)
t < α(i) is strict
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Data: TESS Light Curves

- We demonstrate the application of our method to TESS (Transiting Exoplanet
Survey Satellite)1 datasets which have been observed multiple times.

- We choose two stars on which flares have been unambiguously observed (see
Feinstein et al. 2022).

- Both are eruptive variables, at similar distances, and one is solar-like, and the
other is a low-mass star.

- We apply our method to detect flares in the PDCSAP (Pre-Search Data
Conditioning Simple Aperture Photometry) electron count rate light curves,
which have backgrounds subtracted and systematics corrected for cotrending
basis vectors2.

- We show the light curves, converted from electron count rate to mJy3 for
TIC 13955147 and for TIC 269797536.

1https://tess.mit.edu
2https://spacetelescope.github.io/mast_notebooks/notebooks/TESS/beginner_tour_

lc_tp/beginner_tour_lc_tp.html
3https://tess.mit.edu/public/tesstransients/pages/readme.html

https://tess.mit.edu
https://spacetelescope.github.io/mast_notebooks/notebooks/TESS/beginner_tour_lc_tp/beginner_tour_lc_tp.html
https://spacetelescope.github.io/mast_notebooks/notebooks/TESS/beginner_tour_lc_tp/beginner_tour_lc_tp.html
https://tess.mit.edu/public/tesstransients/pages/readme.html


List of stars and datasets selected

We downloaded the processed light curve data from the TESS Science
Processing Pipeline (TESS-SPOC)4 from the MAST Portal (Mikulski Archive
for Space Telescopes)5 for the sectors listed in the Table below.

TIC Other Names† Spectral Distance† Sectors

Type† [pc]

13955147 HD32372 G5V 78 4, 5, 31, 32
2MASS J05005186-4101065

GaiaDR3 4813691219557127808
1RXSJ050051.7-410100

269797536 2MASS J04363294-7851021 M4V 70 2, 5, 8, 11, 12, 13,
GaiaDR3 4622912654918835200 27, 28, 29, 32, 35, 38, 39

†: From the SIMBAD database (Wenger et al. 2000)

4https://archive.stsci.edu/hlsp/tess-spoc
5https://archive.stsci.edu/missions-and-data/tess

https://archive.stsci.edu/hlsp/tess-spoc
https://archive.stsci.edu/missions-and-data/tess
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TIC13955147-s31-I – Harmonic Fit
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TIC13955147-s31-I – Residuals
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TIC13955147-s31-I – Non-parametric flares detection
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TIC13955147-s31-I – GARCH fitted to the residuals
X = Y (0) − µ(I)
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TIC13955147-s31-I – Non-parametric flares detection
X = Y (0) − µ(I)
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TIC13955147-s31-I – Parametric flares detection
X = Y (0) − µ(I)
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TIC13955147-s31-I – parametric flares detection
Pt = Pr(Gt > σ2

t ) ≤ α
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TIC13955147-s31-I – parametric flares detection
Flares are positive extreme values: 1{Pt≤α} × 1

{X(I)
t >0}

= 1
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That’s it

Thanks ©
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TIC13955147-s4-I
non-parametric detrend parametric flares detection
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TIC13955147-s4-II
non-parametric detrend parametric flares detection
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TIC13955147-s5-I
non-parametric detrend parametric flares detection
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TIC13955147-s5-II
non-parametric detrend parametric flares detection
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TIC269797536-s2
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TIC269797536-s2-I
non-parametric detrend parametric flares detection
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TIC269797536-s2-II
non-parametric detrend parametric flares detection
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A semi-parametric approach: robust estimation of σt
Hampel (1974)

MADn = 1.4826× med
1≤i≤n

|Xi − med
1≤j≤n

Xj |

- The MAD has the best possible breakdown point (50%, twice as much as the
interquartile range)

- A breakdown point of 50% is the highest possible, because the estimate
remains bounded when fewer than 50% of the data points are replaced by
arbitrary numbers.

- The MAD also has some drawbacks.

1) Its efficiency at Gaussian distributions is very low; whereas the location
median’s asymptotic efficiency is still 64%, the MAD is only 37% efficient.

2) MAD takes a symmetric view on dispersion, because one first estimates a
central value (the median) and then attaches equal importance to positive
and negative deviations from it.



Flare distribution indices for each dataset

Dataset α Sample Size Flare energy
TIC 269797536

0005 1.4± 0.21 29 0.086
0039 2.3± 0.22 187 0.039
0027 2.0± 0.28 67 0.092
0008 1.8± 0.27 53 0.042
0032 1.6± 0.29 33 0.092
0013 1.7± 0.31 29 0.358

TIC 13955147
0004 1.2± 0.27 28 0.303
0005 1.8± 0.30 58 0.386
0028 1.4± 0.29 88 0.113
0012 1.9± 0.38 30 0.091
0038 2.1± 0.30 80 0.081
0002 1.4± 0.18 38 0.053
0035 2.3± 0.26 99 0.037
0011 1.8± 0.37 31 0.076
0031 2.3± 0.20 154 0.178
0032 1.9± 0.20 128 0.218



A semi-parametric approach: robust estimation of σt
Rousseeuw & Croux (1993)

Sn = 1.1926× med
1≤i≤n

{ med
1≤j≤n

|Xi −Xj |}

- More efficient and not slanted towards symmetric distributions.

- Unlike the MAD, it does not need any location estimate of the data. Instead
of measuring how far away the observations are from a central value, Sn looks
at a typical distance between observations, which is still valid at asymmetric
distributions.



A semi-parametric approach: robust estimation of σt
Rousseeuw & Croux (1993)

Simulate
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ARFIMA
- The Autoregressive Fractionally Integrated Moving Average (ARFIMA)
model extends the classical ARIMA model by incorporating a fractional
differencing parameter, enabling the model to capture both short-term
autocorrelation and long-range dependence within time series data.

- Particularly valuable for analyzing data sets where phenomena persist over
time, such as in economics and finance.(

1−
p∑

i=1

ϕiL
i

)
(1− L)dYt =

1 +

q∑
j=1

θjL
j

 εt,

where:

L is the lag operator such that LYt = Yt−1,

p is the order of the autoregressive (AR) part,

d is the order of fractional differencing, allowing the model to handle
processes with long memory,

q is the order of the moving average (MA) part,

ϕi are the coefficients of the AR part,

θj are the coefficients of the MA part,

εt is the error term, assumed to be white noise.



ARFIMA
- The unconditional variance of the model is influenced by the parameters of both the
AR and MA parts as well as the differencing parameter d, which affects the
long-term dependence properties of the series.

- The conditional mean of the ARFIMA model is given by the AR part:

E (Yt | Yt−1, Yt−2, . . .) =

p∑
i=1

ϕiYt−i

while the conditional variance remains constant.

- Primary motivation ARFIMA: their ability to model series with highly complex
stochastic structures that exhibit both short-term and long-term dependencies.

- For instance, financial time series often display volatility clustering (short-term) and
long memory (long-term dependencies in volatility), both of which can be effectively
captured by the ARFIMA model.



ARFIMA-GARCH fit with 1 iteration
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ARFIMA-GARCH fit after 5 iteration
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