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Science Collaboration

* Informatics and Statistics one of eight
LSST Science Collaborations

* Over 60 members and growing:
data scientists and astronomers

 http://issc.science.lsst.org




LSST Basics

* 10-year photometric survey
+ 3.2 Gigapixel camera

e 32 trillion observations of
40 billion objects

» Science Goals
— Cataloging the Solar System
— Exploring the Changing Sky
— Milky Way Structure & Formation

— Understanding Dark Matter and Dark Energy
Ivezic, et al. (2014)



Common Themes

* General implementation challenges
» Existing procedures to LSST scales

* Expanding sophistication of analysis
procedures in use

« Making the most of available data



Representations

* A recurring challenge is representing
observables in forms amenable to
standard analysis tools

* The fundamental challenge of “Big Data”
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Representations

What summary statistic retains the
important information for estimating
parameters of interest?
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Representations

Kilbinger, et al., CFHTLenS Results
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Figure 6. The measured shear correlation functions £ (black squares) and
&_ (blue circles), combined from all four Wide patches. The error bars cor-
respond to the total covariance diagonal. Negative values are shown as thin
points with dotted error bars. The lines are the theoretical prediction using
the WMAP?7 best-fitting cosmology and the non-linear model described in
Sect. 4.3. The data points and error bars are listed in Table B1.
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Representations

Kilbinger, et al., CFHTLenS Results
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Representations

What features are most useful for
classifying objects?



Classifying Variables
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Blazars versus CVs

Cataclysmic Variables (CV) - binary
system in Milky Way with matter transfer
from secondary (normal) star to primary
white dwarf

Blazars — Quasars with “jet” of energy
pointed at Earth

Both produce light curves with irregular
variability, lacking periodic structure
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Blazars versus CVs
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Log Magnitude Difference

Blazars versus CVs
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Summarizing the SF

Typical to fit model to structure function

 Power Law Form (Schmidt et al.)
« Damped Random Walk (Kelly et al.)

Effort to find a low-dimensional

representation, avoiding the curse of
dimensionality
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Summarizing the SF

Typical to fit model to structure function

 Power Law Form (Schmidt et al.)
« Damped Random Walk (Kelly et al.)

Effort to find a low-dimensional

representation, avoiding the curse of
dimensionality

Ideally, could utilize higher-dimensional
representation



Deep Learning

“Deep learning is a particular kind of
machine learning that achieves great
power and flexibility by representing the
world as a nested hierarchy of concepts,
with each concept defined in relation to
simpler concepts, and more abstract
representations computed in terms of
less abstract ones.”

--Page 8 in Deep Learning,
Goodfellow, Bengio, and Courville



Deep Learning

machine learning that ach ? 'EEP lggﬁ 5.';'0'
power and flexibility by re & gm pwu
world as a nested hierarclgs

representations compute “
less abstract ones.”

--Page 8 in Deep Learning,
Goodfellow, Bengio, and Courville

www.deeplearningbook.org



Deep Learning

Output nodes

Hidden nodes

Input nodes

Connections




Deep Learning

What makes it “deep?”
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The number of hidden layers is typically
large, allowing for the modeling of
complex relationships.
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Isn’t this just a neural network?



Deep Learning

What makes it “deep?”

The number of hidden layers is typically
large, allowing for the modeling of
complex relationships.

Isn’t this just a neural network?
Yes, basically.



Resurgence of ANN

Multiple factors contributed to growth of
interest in Deep Learning:

* Increase In training set sizes

* Improved algorithms for training deeper
networks (e.g., Hinton, et al. in 2006)

« Growth in computational resources
* Successes



Flexibility

A primary appeal of the approach is the
flexibility in constructing the layers

— How many units are there in each layer?

— What is the mapping from one layer to the
next?

— How is the output constructed from the
final hidden layer?
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A primary appeal of the approach is the
flexibility in constructing the layers

— What is the mapping from one layer to the
next?



Fully Connected Layer

A standard mapping is a fully connected
layer, simply a linear combination of the
input (either the data or the output of the
preceding layer)
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Input —_
e X = (x1,T2,...,24)

d(b1 + wix)  @(bs +wax) == O(by + WpX)

¢(-) is the activation function, a simple
nonlinear mapping



rectified linear hyperbolic tangent

d(u) = max (0, u) ¢(u) = tanh(u)

logistic sigmoid softplus

o) = o 6(u) = 10g(1 + exp(u)
4 2 o 2 4 4 =2 o 2 4
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Additional Hidden
Layers
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Output Layer

There are standard choices for generating
the output from the final hidden layer
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There are standard choices for generating
the output from the final hidden layer

If the output is continuous, then simply
taking a linear combination is typical:

y =b+wlu



Output Layer

There are standard choices for generating
the output from the final hidden layer

If the output is continuous, then simply
taking a linear combination is typical:

y =b+wlu

N

Result of final hidden layer




Output Layer

If the output is binary, then transformation
to a probability is done via the logistic
sigmoid function:

1
Y T 11 exp(— (b + wla))




Output Layer

If the output is multinomial, then
transformation to a probability is done
via the softmax function:

exp(z;)

Zj exp(z;)

softmax(z); =

where
z=Wlu+b



Some Code

R using package mxnet:

fcl = mx.symbol.FullyConnected(data, name="fcl", num_hidden=128)
actl = mx.symbol.Activation(fcl, name="relul", act_type="relu")
fc2 = mx.symbol.FullyConnected(actl, name="fc2", num_hidden=128)
actZz = mx.symbol.Activation(fc2, name="relu2", act_type="relu")
fc3 = mx.symbol.FullyConnected(act2, name="fc3", num_hidden=2)

fullnetwork = mx.symbol.SoftmaxOutput(fc3, name="sm")
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flexibility in constructing the layers

— What is the mapping from one layer to the
next?



Flexibility

A primary appeal of the approach is the
flexibility in constructing the layers

— What is the mapping from one layer to the
next?

There are alternatives to fully connected

layers, e.g. convolutional networks and
recurrent networks



How Does it Work?

Instead of carefully constructing a model
to relate the input to the output, deep
learning exploits a large collection of
simple components to make a prediction

What is the role of expert knowledge?



How Does it Work?

Universal Approximation Theorem
(Hornik, et al.): With enough units, a
single hidden layer can approximate to
arbitrary precision any “nice” function.

But: Deeper networks use units more
efficiently, are easier to fit, and generalize
better



How Does it Work?

But: Deeper networks use units more
efficiently, are easier to fit, and generalize
better

Montufar, et al.: “[flor deep models, the
maximal number of linear regions grows
exponentially fast with the number of
parameters, whereas, for shallow models,
it grows polynomially fast with the number
of parameters.”



Fitting the Model

A cost function is optimized to estimate
the parameters (weights)

Choose cost function to maximize
appropriate likelihood

Stochastic gradient descent with back
propagation to estimate gradient



Regularization

Overfitting is a huge concern

Approaches to regularization (smoothing)
manage the bias/variance tradeoff

The model is parametric, so L? (ridge) or
L' (lasso) penalties on the cost function
are commonly used



Regularization

Dropout is a novel approach to
regularization

Units are randomly included/excluded
during training, approximating averaging
over all possible submodels

Variant of bagging

Reduces potential influence of any
individual unit
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Log Magnitude Difference

Blazars versus CVs

Blazar

Absolute Time Difference

Quantile regression fits
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Blazar versus CV

Fit model with three hidden layers, using
Dropout

128 nodes per layer

Rectified linear units as the activation
functions

958 CVs, 318 Blazars from Catalina Real-
Time Transient Survey



Blazar versus CV

Performance on test set:

Truth
| Blazar | CV
Blazar 18 10

Prediction

CcVv 8 o1



Blazar versus CV

Performance on test set:
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Potential of Deep Learning

Best suited to situations where high-
dimensional input is required

Avoid the curse of dimensionality

Seems particularly relevant for
classification challenges



Quasar Classification
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Quasar Classification
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