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CHASC: California-Harvard
Astrostatistics Collaboration

» http://hea-www.harvard.edu/AstroStat/
e History: why this collaboration?

e Regular Seminars: each second Tuesday at the Science
Center

e Participate in SAMSI workshop => Spring 2006

e Participants: HU Statistics Dept., Irvine UC, and CfA
astronomers

e Topics related mostly to X-ray astronomy, but also sun-
spots!

e Papers: MCMC for X-ray data, Fe-line and F-test issues,
EMC2, hardness ratio and line detection

e Algorithms are described in the papers => working tfowards

Stat: lfc}{/kl) 'Yan® ey%:'e)(iao-Li Meng, Taeyoung Park, Yaming Yu, Rima Izem

Astro: Alanna Connors, Peter Freeman, Vinay Kashyap, Aneta Siemiginowska
Andreas Zezas, James Chiang, Jeff Scargle




X-ray Data Analysis and Statistics

Different type analysis: Spectral, image, timing.

XSPEC and Sherpa provide the main fitting/modeling
environments

X-ray data => counting photons:

-> normal - Gaussian distribution for high number of counts,
but very often we deal with low counts data

Low counts data (< 10)

e => Poisson data and y?is not appropriate!
Several modifications to x?> have been developed:
* Weighted %2 (.e.g. Gehrels 1996)

Formulation of Poisson Likelihood (AC follows Ax2 for N>5)
e Cash statistics: (Cash 1979)

o C-statistics - goodness-of-fit and background (in XSPEC, Keith
Arnaud)



Steps in Data Analysis

e Obtain data - observations!

® Reduce - processing the data, extract
Image, spectrum etc.

® Analysis - Fit the data

e Conclude - Decide on Model,
Hypothesis Testing!

e Reflect



Hypothesis Testing

e How to decide which model is better?

A simple power law or blackbody?
A simple power law or continuum with emission lines?

e Stafistically decide: how to reject a simple
model and accept more complex one?

e Standard (Frequentist!) Model Comparison

Tests:
e Goodness-of-fit

e Maximum Likelihood Ratio test
* F-tfest




Steps in Hypothesis Testing - I

1/ Set up 2 possible exclusive hypotheses:
MO - null hypothesis - formulated to be rejected
M1 - an alternative hypothesis, research hypothesis
each has associated terminal action
2/ Specify a priori the significance level x
choose a test which:

- approximates the conditions

- finds what is needed to obtain the sampling
distribution and the region of rejection, whose area is a
fraction of the total area in the sampling distribution

3/ Run test: reject MO if the test yields a value of the
statistics whose probability of occurance under MO is <«

4/ Carry on terminal action




Steps in Hypothesis

Testing - II

Two model Mo (simpler) and M1 (more
complex) were fit to the data D; Mo
=> null hypothesis.

Construct test statistics T from the
best fit of two models:
e.g. Ax? = %%, — x4
Determine each sampling distribution
for T statistics, e.g.

p(T | Mo) and p(T | M1)

Determine significance a =>
Reject Mo when p (T | Mo) < «a

Determine the power of the test =>

B — probability of selecting Mo when
ML is correct

7 p(TIMo)

p(M1H,)




Conditions for LRT and F-test

® The two models that are being compared
have to be nested:

e broken power law is an example of a nested model
e BUT power law and thermal plasma models are NOT nested

e The null values of the additional

parameters may not be on the boundary of
the set of possible parameter values:

e continuum + emission line
-> line intensity = O on the boundary
e References

Freeman et al 1999, ApJ, 524, 753
Protassov et al 2002, ApJ 571, 545



Simple Steps in Calibrating the Test:

Simulate N data sets (e.g. use fakeit in Sherpa or XSPEC):

=> the null model with the best-fit parameters (e.g. power law,
thermal)

=> the same background, instrument responses, exposure time as in the
initial analysis

(A) Fit the null and alternative models to each of the N
simulated data sets

and
(B) compute the test statistic:
T rr= -2log [L(6,lsim)/L(B,Isim)]
0, 6, - best fit parameters
Te= A/X2,
Compute the p-value - proportion of simulations that

results in a value of statistic (T) more extreme than the
value computed with the observed data.

p-value = (1/N) * Number of [ T(sim) > T(data) ]



Simulation Example

Comparison between p-value
And significance in the x?distribution
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Simulation Example

Comparison between p-value
And significance in the x?distribution
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Bayesian Methods

use Bayesian approach - max likelihood, priors,
posterior distribution - to fit/find the modes of
the posterior (best fit parameters)

Simulate from the posterior distribution, including
uncertainties on the best-fit parameters,

Calculate posterior predictive p-values
Bayes factors:
direct comparison of probabilities P(M1)/P(Mo)



CHASC Projects at SAMSI 2006

e Source and Feature detection Working group
e Issues in Modeling High Counts Data

e Image reconstructions (e.g. Solar data)
e Detection and upper limits in high background data (GLAST)
e Smoothed/unsharp mask images - significance of features

e Issues in Low Counts Data
Upper limits
Classification of Sources - point source vs. extended
Poisson data in the presence of Poisson Background
Quantification of uncertainty and Confidence

Other Projects in Town:

Calibration uncertainties in X-ray analysis
Emission Measure model for X-ray spectroscopy

(Log N - Log S) model in X-ray surveys




Bayesian Model Comparison

To compare two models, a Bayesian computes the odds, or odd ratio:

_pM,|D)
p(M,|D)

_ p(M)p(D| M,)
p(M,)p(D|M,)

P,
p(M,) o

010

where B,, is the Bayes factor. When there is no a priori preference for either
model, B,, = 1 of one indicates that each model is equally likely to be correct,
while B,, = 10 may be considered sufficient to accept the alternative model
(although that number should be greater if the alternative model is
controversial).



Bayesian Model Comparison

we showed how Bayes’ theorem is applied in model fits. It can also be

applied to model comparison:
PP g p(MID)=p(M)p(§II;;4).

p(M) is the prior probability for M;
p(D) is an ignorable normalization constant; and
p(D | M) is the average, or global, likelihood:

p(DIM)=fa’8p(8 IM)p(DIM,0)

=fa'ep(e IM)L(M ).

In other words, it is the (normalized) integral of the posterior distribution
over all parameter space. Note that this integral may be computed
numerically, by brute force, or if the likelihood surface is approximately a
multi-dimensional Gaussian (ie. if L o exp[-x*/2]), by the Laplace

approximation: ~ ,
PP p(DIM)=p®IM)2r)""*detC L,

where C is the covariance matrix (estimated numerically at the mode).



Model Comparison Tests

A model comparison test statistic T
is created from the best-fit
statistics of each fit; it is sampled
from a probability distribution p(T).
The test significance is defined as
the integral of p(T) from the
observed value of T to infinity. The
significance quantifies the
probability that one would select
the more complex model when in
fact the null hypothesis is correct.
A standard threshold for selecting
the more complex model is
significance < 0.05 (the "95%
criterion" of statistics).

p (M)




