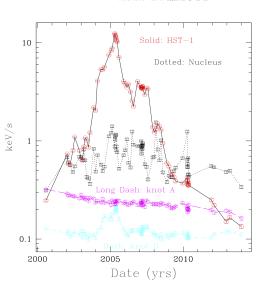
Estimation of overlapping sources: the problem

Ruobin Gong

AstroStat seminar


January 24, 2017

Problem Background

- Optical light curves measured by telescopes with insufficient resolution;
- Possibility of multiple overlapping sources that need to be distinguished.

Problem Background

Data

Every pixel supplies a pair of time series:

$$(X(t_i), t_i) : i = 1, ..., N$$

where

- ▶ t_i: time of observation (unevenly spaced)
- ▶ $X(t_i)$: (log) flux measured at time t_i .

Current approaches: single source

Variations in quasar luminosity can be modeled by a Continuous AR(1) process (otherwise known as the O-U process):

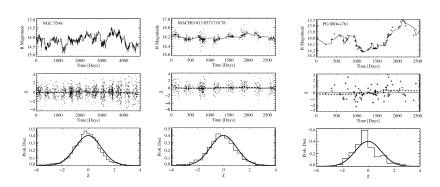


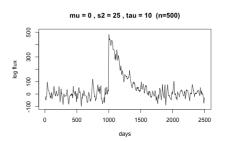
Figure: Kelly et al., 2006

Current approaches: single source

CAR(1) process:

- Parameters: $\boldsymbol{\theta} = (\mu, \sigma^2, \tau)$
 - $\blacktriangleright \mu$: overall mean
 - $\triangleright \sigma$: short-term variability
 - ightharpoonup au: relaxation/reversion time
- SDE representation:

$$dX(t) = -\frac{1}{\tau}(X(t) - \mu)dt + \sigma dB(t)$$

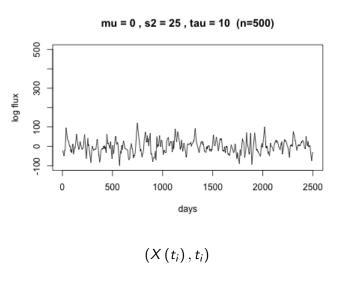

Current approaches: single source

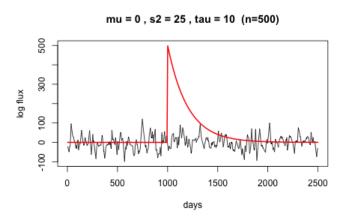
CAR(1) process:

conditional law representation:

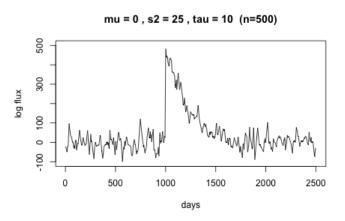

$$X\left(t_{1}
ight)| heta|\sim N\left(\mu,rac{ au\sigma^{2}}{2}
ight) \ X\left(t_{j}
ight)|X\left(t_{j-1}
ight), heta|\sim N\left(\mu+a_{j}\left(X\left(t_{j-1}
ight)-\mu
ight),rac{ au\sigma^{2}}{2}\left(1-a_{j}^{2}
ight)
ight) \ ext{where } a_{i}\equiv\exp\left(-\left(t_{i}-t_{i-1}
ight)/ au
ight)$$

- ► Bayesian estimation (Kelly et al., 2009; Tak et al. 2016);
- Extensions: CARMA (Kelly et al., 2014)


Questions:


- ▶ Did a flare get convoluted into the light curve?
- ▶ If so, when did it start?
- ▶ If there is one...is there a second one?

Possible ways to model:


- Spline regression with unknown knot location;
- Hidden Markov-type models;
- **.**..?

$$\left(X\left(t_{i}\right)+rac{\mathcal{K}_{oldsymbol{\eta}}\left(t_{i}
ight)}{\eta_{1}\left(t_{i}
ight)},t_{i}
ight)$$
 $\mathcal{K}_{oldsymbol{\eta}}\left(t_{i}
ight)=\eta_{1}\cdot\exp\left(-\left(t_{i}-\eta_{2}
ight)/\eta_{3}
ight)\cdot\mathbf{1}\left(t_{i}>\eta_{2}
ight)$

$$\left(X'\left(t_{i}
ight)\equiv X\left(t_{i}
ight)+rac{\mathsf{K}_{oldsymbol{\eta}}\left(t_{i}
ight)}{\eta_{1}\left(t_{i}
ight)},t_{i}
ight)$$
 $K_{oldsymbol{\eta}}\left(t_{i}
ight)=\eta_{1}\cdot\exp\left(-\left(t_{i}-\eta_{2}
ight)/\eta_{3}
ight)\cdot\mathbf{1}\left(t_{i}>\eta_{2}
ight)$

