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Recap of the Problem

Problem: Systematic errors in comparing effective areas.
Notations:
Do intion o Instruments {1 < i < N} with attributes {A;,1 < i < N}.
@ Sources {1 < j < M} with fluxes {F;,1 < j < M}.
@ Photon Counts {C;j = A;F;,1 <i< N, 1<j< M}
obtained from measuring flux F; using effective area A;.
Questions:

@ How to adjust {A;,1 < i < N} such that
{Cij/Ai,1 < i < N}, the estimated F; using observed
values, agree with F; within statistical uncertainty?

© How to estimate the systematic error on the A;’s?



Basic Model — Estimand Level
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log-scale linear additive model

orob We start by noting a trivial fact that Cj; = A;F;j is
Description mathematically equivalent to

log C;j = log A; + log F; = B; + G}, (1)
where B; = log A;, G; = log F;.

However, this relationship holds at the estimand level, not at
the estimator/observation level.

@ Upper case: estimand (A;, Fj, Bj, Gj).

o Lower case: estimators / observations (cjj, a;, b;).




Basic Model — Observation Level

Astrostat
4/37 . . .
Hierarchical regression model:

yij = log(¢) = cjj + Bj + Gj + €, (2)
where €j; ~ N(O,ag-) independently; i € {1,...,N};
jeJi={1<j< M:cjis observed}.
log-Norma Half-variance Correction:

Model

Qi = —0.503- is necessary to guarantee
E(C,'j) = C,'j = exp(B,- + Gj) = A,FJ

Priors:

The prior for G; is flat in R.
The prior for B; is a Gaussian /\/'(b,-,7’,2). b; = log a; is known.




Basic Model — Observation Level

Hierarchical regression model likelihood function:

Let D be our observed data {y;;, b;;1 < i < N,j € Ji} and
y’ =y; +0. 502' 0=1{Bj,Gjiel,je J} our estimand, i.e.
parameters of mterest and ¢ = {JU, s iel,je Ji}, the

looel nuisance parameters. We also denote /; the collection of all i’s
o such that J; covers j.

The probability density of our data D given 6 and ¢ is

R IR
T 207 T 22
o= TTIT |2 % |12

i=1jeJs; | Y i=1



Complications with Real Data

Astrostat A multiplicative factor due to pile-up

Let Z;; be the constant adjusting for the pile-up effect.
Cij = ZjjAiFj = Zjexp(B; + Gj).

(1) Zj = zj is an observed constant.

og Rorma! yij = log(cjj) — log(Zj) = ajj + Bi + Gj + €jj.

We only need to replace y;; = log(c;) with log(cjj/Zj;).

(2) Zj is observed with uncertainty. Zj; is a latent variable
and the observations are log(z;;) ~ N (log(Z;j), A?).

log(cij) — log(zij) = ajj + Bi + Gj + €,

where Var(&;) = Var(ej;) + \°.



Model Fitting: identifiability assumptions
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Hierarchical
log-Normal
Model

To estimate the B;'s and G;j's using observed data, we need to
make assumptions on the variances to make sure the model is
identifiable. Next, we will be focusing on two major
assumptions which are practically reasonable.

@ Known variance: 01-21- and 7',-2 are known constants.

@ Unknown instrumental variance: the noise term ¢;; only
depends on the instrument-wise noise, i.e. 05- = w?
7',2 =72 for 1 < i< N is unknown.

Remark: The likelihood is unbounded in (2).



Model Fitting: MAP for known variances

a,?j and 72 are known constants

Maximum a posteriori (MAP): The B;'s and G;'s adopts the
following form as shrinkage estimators.

5 b/ e, 04— 6)/od
Model Fitting : 1/7—[2 + Z_]GJ, 1/0—5
e Zielj(y:{j - Bi)/U:?j

;=
Zielj 1/‘7;2j

Asymptotic variances for MAP estimators: inverse of
observed/expected Fisher information matrix.
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Model Fitting

Model Fitting: MAP for known variances

Lemma

When a// instruments measure all sources and
{O'U = w, ) T 2} <icnii< 1<j<m are known constants:

N
Var(G)) = [ wi?] ™ Se. Var(By) = [Muw;2 + 7727 8P,

where the shrinkage factors Sc¢, {S(Bi)}lg,'g/\/ are given by

valw —(M—l)zl 1<,u*4[Mw*2—|—7'72] L
Z,N1w MZ, lw_4[/\/lw_2+7-_2] !

Zz,)lzl wy? — MZu#i wy [Mwi? + 77271

SN wit - MY witMwg?

S =




Model Fitting: MCMC for known variances
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When ag-'s and 72's are known, iterate the following:
(a) For 1 <i < N, sample B; from

v <b,-/7,-2 + e, vl — G/ 1 )
1/7,'2 + ZjeJ; 1/03' 1/71'2 + ZJ'GJ:' 1/0"21

(b) For 1 <j < M, sample G; from

Model Fitting

N(Z,-e,j(y,f,- — Bj)/o? 1 )
Zielj 1/‘7,'2j ’ Zielj 1/0;2]'

Alternative: Hamiltonian Monte Carlo algorithm.




Model Fitting: MAP for unknown variances
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If 0,-2J- = w? where {w?}1<j<py are unknown, {T?}1<;<n are
known, we need an extra equation to update MAP estimators.

wgzz\/1+z(y,-j_5,_@)2/|J,.y_2. 3)

JEJi

Model Fitting

Furthermore, if 7',-2 =72 for 1 < i< N is unknown, we have an
extra equation given by 72 = SN (B; — b;)?/N.

Again, the asymptotic variances are given by inverting the
expected /observed Fisher information matrix.




Model Fitting: MAP for unknown variances

If all instruments measure all sources and the priors for w? are flat;
_ 2Mw A —21—
Var(B;) = [r,* + ] 'RY, Var(G) = [T, w7 ! Re,
72 2 o
Var(ofz?) = %W + 7&)74]_1 Rg)

The shrinkage factors {Rg),’Rg)}lg;SN, R are given by

Z,I'V:1 wi (W +2)71 - 2M 37 i Br .

» RY) = ;
Model Fitting ZlNzl wi72(wi2 + 2)_1 _2M 221:1 /Bk
N wr2r2 _a wr2r? -1 202 2
RO — Lot Mg ? ~ Dt [2% * Mw;zm‘z} [Mw:2+r;2] :
@ N wy 2Ty ? wy 2Ty ? =i T 2wy ? 28
i iy = Tl [ + | [
o MEL - (M1 (S D)7+ aM S i)
G =

MZ,{L W;2 -M (Z/N:1(w12 +2)71 +4M 25:1 /Bk)
Br = wi H(wi +2) (wh +2)7 2+ 2Mw T 1< k< .




Regularization of Posterior Likelihood
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Pt Because the log-likelihood is unbounded, it causes trouble
‘ when calculating the MAP with flat prior on w . In this way
we can add conjugate priors (inverse-gamma(« ,5)) on w?

The update of B; and G; keeps the same. The update of w; is

204212 28+S; 20+ 2
Model Fitting w? -2 |:1 4 :| + — 214+ =——1.
' \/ || i ||

where S§; = ZJ-EJ,(YU - Bi— GJ)2

This update has a lower bound for w,—z, which avoids the
unboundness of the posterior likelihood on the boundary.




Model Fitting: MCMC for unknown variances
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QIf {Ug- = w,?;j € Jit1<i<n are unknown, 7;'s are known.
We set independent Inv — x?(v,,, s2) priors for w?. The
Gibbs sampling iterates steps (a) (b) (c) till convergence.

o If {a =w? 72 =172,j € Ji}1<i<n are unknown. We set
Inv — X2(1/7—, s2) prior for 72. The Gibbs sampling iterates
Model Fitting steps (a), (b), (c) and (d) till convergence.

(a) and (b), updates for B;, G;, same as in known variances.
(c) Update {w?} one-at-a-time using the Metropolis-Hastings.
(d) Sample 72 ~ Inv — x2(vr + N,vys2 + 2N (b — B;).

Alternative: Hamiltonian Monte Carlo algorithm.




Astrostat
15/37

Pr

Simulation
Results

Demonstration with Simulation Results

First, we simulate data with the fitting model and perform
MAP calculation, MCMC and HMC.

model_1 MLE Sd= 00583

Figure: When 05-, 72 are known.



Demonstration with Simulation Results

81 model 2 MLE Sd=00592
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Figure: When 05- = w? is unknown and 72 is known.



Demonstration with Simulation Results
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Figure: When 05. = w,-z and T,-2 = 7° are unknown.
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Simulation
Results

Discussion: In fact, HMC is not robust for this model. With
different step sizes and leapfrog steps, HMC can generate some
crazy results, especially for model 3. This might be because the
derivative could be very large sometimes, and the posterior is
very huge when w is small.

mmmmmmm
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Figure: HMC result with different step size and leapfrog steps.



Real Data Results
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’ In the real dataset, we have three instruments observing more
than 100 sources. The observed fluxes are very huge, as well as

the pile-up effect.

log(C) log(2) log(C)-log(2)

Real Data <
Results

1og(C) log(2) Iog(C)-0g(2)

Figure: Histograms of log(C), log(Z) and log(C/Z).




Astrostat For our model fitting, neither MCMC nor HMC could get a
2031 converging chain.
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Figure: Fitting real data with unknown w? and 72.
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B2 model 3 MLE Sd= 0.25512
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Figure: Fitting real data with unknown w? and 72.
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Figure: Fitting real data with unknown w? and 72.
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23/37 We also try our model fitting with another smaller data set
oo (N=5, M=13). MCMC works for model 1 and model 2, while
HMC still have troubles for robustness.

Real Data

Results

Figure: Fitting the smaller real data with known w? and 72.
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Figure: Fitting the smaller real data with unknown w? and known 72.
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Xufei V

Real Data
Results

Figure: Fitting the smaller real data with unknown w? and 72.




Discussions about Poisson Model
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@ Original scale versus log-scale.

@ Choice of Priors.

Hierarchical
Poisson Model




Hierarchical Poisson Model (log scale)
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Hierarchical
Poisson Model

Considering the fact that the observations cj; are actually
counts, it is more natural to define the following Poisson model.

cjj ~ Poisson (Zij exp(B; + GJ))’ (4)

independently for j € J;, 1 <i < N. The prior for G; is flat.
The prior for B is N'(b;, 72). When z; = Zj;,

I(,6|D) = ZZ[C,JB+G)—zeB+G] Z{@y 5)

i=1 jeJ; =1 !

where ¢ = (73,...,73), 0 = (B1,...,Bn; G1, ..., Gu).

Remark: It is crutial to have the ‘prior part’ with b;'s, otherwise this

model is not identifiable. This can easily be seen from the degeneracy of
the Fisher information matrix of {B;}1<i<n and {Gj}1<j<m when the term
with b;'s is absent in the likelihood function in Equation ?7.
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Hierarchical
Poisson Model

Do we still need to work on the log-scale?




Poisson Model: Introduction
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Hierarchical
Poisson Model

Considering the fact that the observations cj; are actually
counts, it is more natural to define the following Poisson model.

cij ~ Poisson(Z;A;F;), (6)
independently for j € J;, 1 < i < N. A;j ~ DA(aiﬂ','z)-
Parameters: & = (72,. .. ,T,%,), 0= (A1,....,An; F1,..., Fum).

Assume that Zj;, the multiplicative factor due to pile-up, is
observed with independent noise: zj ~ Dz(Zj).

Special case: Zjj = zj;, i.e. observed without uncertainty.

Question: What is Dy and Dz?
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Model Fitting

Poisson Model: Model Fitting (1)

(1) zij = Zj, Ai ~ Gamma(v, <), log-likelihood /(€,8|D) is
N
ZZ[C;J(IogA,-+IogF) zjAiFi]+> (v—1)log A; ——A,-.

i=1 jeJ; i=1
Setting score functions to zero gives the following iterative
formula for calculating MLE:

- 1+ ZjeJ,— Cij o Zielj Cij
viai+ e, zifit T Yiey ziAi
The Gibbs sampling goes as follows:

AilF1, ..., Fm ~ Gamma (V+ZCU,[V/3/ -‘rZzUFj]—l) 7

JEJ; J€J;

FilAs, ..., Ay ~ Gamma (Z ci +1, [ZZUA:']1> )

iel; i€l;



Poisson Model: Model Fitting (2)
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(2) zjj = Zj, Ai ~ N(a,-,T,?), log-likelihood /(&,0|D) is
N i A2
Z Z [cij(log Ai + log F}) — zjAiFj] — Z {%} — g log(77).
i=1 jed; i=1 i

Setting the score functions to zero gives the following iterative
formula:

. 2 = ) 2 L F)2 2 .
i —Ti Qijey zjFj + \/(a, —Ti 2jey; z;F;)? + 47; Zjej,. Cij

Ai = '
2
ey
i; Cij
Model Fitting F= el 7
Zielj zjAi
2 _ 2 2 _ W 2
If 77 = 7% is unknown, then we also need 72 = >~ (ai — Aj)?/N.




Poisson Model: Model Fitting (2)
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The MCMC sampling goes as follows:
e Update Ay, ..., Ay using the Metropolis-Hastings
algorithm.
e Update
FilAs, ..., An ~ Gamma (S, ¢+ 1, [y 250,

o If 7',-2 = 72 is unknown, update

72 ~ Inv — X%,(Z,N:l(ai - Ai)2/N)-

Model Fitting




Poisson Model: Model Fitting (3)
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S— (3) zj = Zjj, log Ai ~ N(b;, 7?), log-likelihood /(&,0|D) is

Xufei Wang
N

Z Z [cij(log Ai + log Fj) — z;AiFj] — Z {w} Z log A;.

i=1 jeJ; i=1

The MCMC sampling goes as follows:

o Update Ay, ..., Ay using the Metropolis-Hastings.

@ Update
Fj\Al, ..., Ay ~ Gamma (Zie/j cj+1, [Zielj Ziin]fl).
Model Fitting
o If 7',-2 = 72 is unknown, update

72~ dnv — X3 (N (ai — A)?/N).




Poisson Model: Model Fitting (4)

Astrostat

34/37 (4) Zjj ~ Gamma(yz,z;j/yz), Ai ~ Gamma(va, aj/va),
N
1(€,6,Z|D) = ZZGﬂog(A F) +Z(ua— 1) log(A 2 A
i=1 jeJ; i=1 2
LY S -1+ eoa(2) - (f+AF)

i=1 jeJ;

EM algorithm: the E-step relies on the conditional distribution
Zi|Ai, F; ~ Gamma(cjj + vz, (v2/zjj + AiF;)71); thus
Optimizing this Q-function over A;, F; gives the new A;, F;'s:

Model Fitting

Va— 1+ e, G Yiey i

A = )
2+ ZjeJ,- Fj voz; H AR i€l; Ai vezy AR Fold




The Gibbs sampling goes as follows:

-1
Zij ~ Gamma (l/z + ¢jj, [VZ + A’.,:j] ) :
Zij

Va
A; ~ Gamma V;Hr;c,-j, a—JrZZUFj ,
Jedi

Model Fitting G:, ~ Gamma g Cij7 E ZUAI

icl; icl;



Poisson Model: Model Fitting (5)

(5) log zj ~ N (log Zjj, A?), the log-likelihood function is

N

I(€.6,2D) = > [cij log(ZiAF) = ZiAF] = {%}

i=1 jeJ; i=1

Iog (log(zy) |°g(Zij))2
Z Z Z Z 222 '

i=1 jeJ; i=1 jeJ;

Remark: in this case, the latent variables Zj; are not easy to

Model Fitting

integrate out, neither does it have a nice form for Gibbs update.



Demonstration with Simulation Results

Astrostat We only plot the HMC result for model 1. Pure MCMC has
' some problem for it generates very large results. In fact, the
results of HMC relies on the choice of v, that is to say the prior

for A; very much.

Figure: HMC results for Poisson model.

Simulation
Results




Discussions and Future Work
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@ For log-normal model, how could we improve the MCMC?
For example, how can we choose HMC step size and
leapfrog steps to gain a robust result?

@ For the real data, do we need and truncate because the
range is so wide right now?

@ For Poisson model, which model assumption shall we
choose?

Discussions

and Future
Work




