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INTRODUCTION

SCIENTIFIC OBJECTIVES:
Develop a comprehensive method to infer (properties of) the
distribution of source fluxes for a wide variety source populations.

STATISTICAL OBJECTIVES:
> Inference: Account for non-ignorable missing data
» Model Checking: Evaluate the adequacy of a given model

» Model Selection: Select the best model for a given dataset

COLLABORATORS: Paul D. Baines (UCD), Andreas Zezas
(University of Crete & CfA), Vinay Kashyap (CfA).
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INTRODUCTION: ‘log N — log S’

» Cumulative number of sources detectable at a given
sensitivity:

N(>S) =D lisss)
i
or the number of source fluxes brighter than a threshold, S.

» The name ‘log N — log S’ refers to the relationship between
(or plot of) logig N(> S) and log;o S.

» In many cosmological applications there is strong theory that
expects the log N — log S to obey a Power law:

N(> S) Z/{5>5} ~ aS% S>S.n

Taking the logarithm gives the linear log(N) — log(S)
relationship.
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S = 0.5-2.0 keV Flux (erg cm=2 s71)

Note: There is uncertainty on both

log N — log S FITTING

Knowing the specific relationship
for different objects (e.g., stars,
galaxies, pulsars) gives a lot of
information about the underlying

physics (e.g., the mass of galaxies).

Helps in tests for cosmological
parameters, constrains evolutionary
models, etc.

Primary Goal: Estimate 6, the
power law slope, while properly
accounting for detector
uncertainties and biases.

x- and y-axes (i.e., N and S).
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FLuxX DISTRIBUTION

Probabilistic Connection: Under independent sampling, linearity on
the log N — log S scale is equivalent to the flux distribution being a
Pareto distribution.

SilT1,6 " Pareto (0,711), i=1,...,N.

Piecewise-linear power-law extends to broken power-law model for
flux distribution, subject to continuity constraint at breakpoint 7»:

_ _f ag—bplogip(s) 1 <s<m
10810 (1 = Fo(s)) = { a1 — O1logyp(s) s>

_91
YNI-Xl—I—(l—I)-Xz7 where: INBjn<1, [1_<ﬁ) ])
T2

Xy ~ Truncated-Pareto (11, 01, 72) , Xo ~ Pareto (72, 6,) .

Can be extended to a multiple broken power-law with arbitrary

number, m — 1, of break-points.
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MIsSING DATA

There are many potential causes of uncertainty and missing data in
astronomical data:

» Low-count sources (below detection threshold)
» Detector schedules (source not within detector range)
» Background contamination (e.g., total=source-+background)

» Foreground contamination (other objects between the source
and detector)
> etc.
Important: Whether a source is observed is a function of its source
count (intensity), which is unobserved for unobserved sources —
missing data mechanism is non-ignorable, so it needs to be
carefully accounted for in the analysis.
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» Flux is not measured directly; instead, the data are a list of
photon counts, with some extra information about the
background and detector properties.

Src_ID Counts Bgr_intensity Src_area 0ff_axis_L Effective_area

1 1093  47.38195 466 6.18 383.609
2 927 16.40961 180 5.75 392.709
3 31 12.66816 126 4.43 396.570
4 5 1.155294 12 0.48 278.892
5 286 17.50082 190 5.82 345.492
6 469 44.74188 436 5.36 358.845

> ...and an incompleteness function (selection function), specifying
the probability of source detection under a range of conditions:

P( Detecting a source with flux S, background intensity B,
location L and effective area E )
=g(S,B,L,E)

8/44



SINGLE POWER-LAW MODEL

Standard power-law flux distribution:
SilT,0 i Pareto (6,7),i=1,...,N.
Source and background photon counts:
YU S, B, Ly, E: "EP Pois (M(S:, Br, Li, ) + k(B Li Ei)),i=1,..., N,
Incompleteness, missing data indicators:
li ~ Bernoulli (g (S}, Bj, Lj, E;)) .
Prior distributions:

N ~ Neg-Bin (an, by) ,
0 ~ Gamma(a, b),

7 ~ Gamma(am, bm).
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BROKEN POWER-LAW MODEL

Broken power-law flux distribution:
5;|?,5% Broken-Pareto (5, ?) Ji=1,...,N.
Source and background photon counts:
YU S, By, Ly, E "EP Pois (NS, By, Li, i) + k(Br, Li, E1)) i =1,..., .
Incompleteness, missing data indicators:
li ~ Bernoulli (g (S;, Bj, Li, E;)) .
Prior distributions:
N ~ Neg-Bin (ay, by) ,
0; ndep Gammal(aj, bj),j=1,...,m,

71 ~ Gamma(am, bm)

J
indep .
=T+ €, '~ Normal(uy, ), j = 2,....m.
k=2
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MODEL OVERVIEW

Unusual points and important notes:

» The dimension of the missing data is unknown (care must be
taken with conditioning)

» The incompleteness function g must be known well; can take
any form; is problem-specific

» The number of flux populations in sample, m, must be
specified

» The flux lower limit and break-points, 7;,j = 1,..., m, can be
estimated

» Prior parameters can be science-based, i.e., ‘weakly
informative’
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POSTERIOR INFERENCE (SINGLE PARETO)

Inference about 8, N, S, 7 is based on the observed data posterior
distribution. Care must be taken with the variable dimension
marginalization over the unobserved fluxes.

The single power-law posterior can be shown to be:

tot
P (N, 97 T, 50b57 os[;l;lna Yogs, Bob57 Lob57 Eobs)

N (N=n) N+ay—1 1\ by \W
Ex( n )H{"SN}‘(I_”(G’T)) ' ( ay —1 ><1+bm> <1+bm> Tinezty
B gem1 ey LB am 1wy . ﬁp(B- L, E) - orPs (0D .
@ {00} " 7o tr>op - |I1p(Bi L ; {r<s;}

i+ k)T
(5, By, Ly B) - L Oty

ytot| {Y/F"‘eZ*}
i
( ytot ) X . £ Yl_tot,Yl_Src :
. ; _
LG A + ki Aj + ki {rreeton,. vpry}

with A; = X(S;, Bi, Lj, Ej) and kj = k(Bj, L;, E;).

i

ysre
i
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POSTERIOR INFERENCE (BROKEN-PARETO)

The broken power-law posterior can be shown to be:

ysre
P (N, 0,7, Sobs, obsln obsa Bobss Lobs, Eobs)

N 1 ' [( " )HUSN} ' (lfw(e,r»(”—")]

p(n, Y32L, Bobss Lobss Eobs)
N ay m baj
N+ay—1 ) 1 by 72—l _bo;
. I . 0. e U,
R w1 o) \ivey) e | LRG0 {65203

n
P Tm) ocr <y <<} [HP(BI'» Li, E) - g(Si, Bi, L;, E;)
=1

S O E) T e

ytot
. 4(/\/‘ tki) (Nitki)p
ytot| € {yfetezty
i

ytot by yire
. j
( A ) Aj + ki

. —0.:
with i1 = +00, X\j = X(S;, Bj, Lj, E), ki = k(B;, L, E;), and ]2, (T'Tfl) =1

Yl_tot _ Yl_src

Ai
<1 Y k,-> H{Vf’fe{o,l,...,vimf}}
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COMPUTATION STRATEGY: GIBBS SAMPLER

The Gibbs sampler consists of five steps:

[N|n,9], [0|n7 N, SobSaT]a [7'|n, N, 9, SObSJBObS7LObS)EObS]7
[SObS|N7 97 T, Iobs’ otg§7 OS[,Z, Bob57 Lobs; Eobs] s

src|\/tot
[ obs‘ Yob57 Bobs; Lob57 Eobs; /ob57 Sobs]

where each parameter block is sampled via various numerical and
probabilistic routines, including Metropolis Hastings.
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SIMULATION ExAMPLE MCMC OUTPUT
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(L) Posterior logN-logS (red: missing, gray: observed), truth (blue).
(R) Posterior distributions for N, 6, T
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NON-IGNORABLE MISSINGNESS

6 = 0.990, (0.803,1.192)
0 = 0.784, (0.520,0.978)

(L) Nonignorable (full) analysis:
6 = 0.986
16 /44

(R) Ignorable analysis:

Truth:



POSTERIOR PREDICTIVE CHECKING

Consider testing the hypothesis:

Ho : The model is correctly specified, vs.,
‘H1 : The model is not correctly specified.

MCMC draws allow to check the adequacy of the model fit for
Bayesian models using the posterior predictive distribution:

p(y*ly) = /P(y*ﬁly)d@ = /P(y*!9)-p(9ly)d9

Idea: (Assuming conditional independence) We expect the predictive
distribution of new data to look ‘similar’ to the empirical
distribution of the observed data.

Extension: We expect function summaries of interesting features
(e.g., test statistics) of the new data to look ‘similar’ to the

empirical distribution of functions of the observed data.
17/44



POSTERIOR PREDICTIVE CHECKING

» PROCEDURE:
1. Sample 6 from the posterior distribution p(f]y)
2. Given 6, sample y* (replicate photon counts) from p(y*|6)
3. Compute desired statistic T(y*)
4. Compute the posterior predictive p—value = proportion of the
replicate cases in which T(y*) exceeds T(y):

pr =P(T(y*) > T(y)ly,Ho).

» Choice of test statistic T(y) to summarize the desired
features of distribution of the photon counts?

n = dim(y1, ..., ¥n)

Max = max(y1, ..., ¥n)

Med = Q2(yla -~-a)/n)

IQR = Q3(y17 ---7Yn) - Ql(y17 ---7yn)

Skewness = skewness(y1, ..., Yn)

R_%mde = coefficient of determination between log N — log S¢rude,
where Scryde = (y - bg)’}//E
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POSTERIOR PREDICTIVE CHECK: EXAMPLES

If the model is true, the posterior predictive p-value will almost
certainly be very close to 0.5.

p-value= 0.47 ‘ p-value= 0.02
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F1GURE: (Left) If the model is in fact true, the sample IQR of new sets
of n observations will look similar to that of observed n data points.
(Right) The sample value of R of new sets of n observations does not
look similar to that of observed n data points, so the data is unlikely to
have been produced from current model.



B1VARIATE PP p—VALUES

The bivariate posterior predictive p—value = area under slice of
bivariate posterior predictive distr. of two test statistics
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FIGURE: (Left) Model correctly specified, (Right) Model incorrectly
specified
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MODEL SELECTION

FIGURE: (Left) Regular Pareto, (Right) Broken Pareto

Note: similar posterior log N — log S, but very different predictive
and inferential properties
21/ 44



MODEL SELECTION

Model selection is a challenging problem in Bayesian applications.
Popular methods are: Bayes Factor, DIC, and WAIC.

» Bayes Factor

p(Mily) _ p(y|M1) p(Mr)
p(Maly) — p(yIM2) p(M2)

» Has good model selection performance in simple settings

_ p(M.)
B BFlzP(Mz)’

Problem: Requires evaluating marginal probability of the data
given the model My

p(yIMi) = ply) = /Q p(y16)p(6)d6.
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MODEL SELECTION

» DIC, Deviance Information Criteria (Spiegelhalter, 2002)

DIC = —2log p(y|9~Bayes) + 2ppic
poic =2 {Iog P(y|0gayes) — Ellog p(y!9)!y]}

» WAIC, Widely Applicable Information Criteria (Watanabe,
2010) N

WAIC = 2y log E[p(yi|0)ly] + 2puaic
i=1
N
pwaic =2 _ {log E[p(yi|0)|y] — Ellog p(yi|0)|y1}
i=1

Problem: In complex hierarchical problems, DIC and WAIC can
have poor model selection performance by over-fitting.

Alternatives?
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ADAPTIVE FENCE METHOD (AF)

Original method of adaptive fence (Jiang et.al., 2008).
For a collection of nested candidate models My, M, ..., My , with
the full model M,
> Select a measure of goodness of fit (@ = — log p(y|OmLE))
» Select optimality criterion (minimal dimension)
» Construct a fence

QM) — Q(M) < ¢
where ¢ is a constant, and necessarily Q(M;) > Q(M) for all j
» Label model M, if it is in the Fence and satisfied optimality
criterion
> The model to maximize

p* = P(Mc = Mopt)

is chosen to be the correct model
> The probability P is evaluated under model M
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ADAPTIVE FENCE METHOD (AF)

Recent article (Jiang, 2014) presents various fence methods.

eeeeeeeeeeeeeeeeeeeeeeeeeeee

» Adaptive Fence (AF) selects the cut-off ¢
by maximizing the empirical probability of
selection

» Parametric bootstrap is used to evaluate
the maximum empirical probability P

T given parameter MLE of model M

cvec] g

Problem: MLE are not easily available for log(N) — log(S)
application with missing data

Problem: AF has adequate performance when true model is
(closest to) the boundary model of the nested candidate models

Problem: Non-nested candidate models, for which no full model

can be easily identified?
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BAYESIAN ADAPTIVE FENCE METHOD (BAFM)

We extend AF method for Bayesian applications and propose
» Use non-parametric bootstrap
» Use alternate (Bayesian version) measures of goodness-of-fit,

N 1L
@ =- Z log [L ZP(Y:‘W;\?CMC) ,
i=1 =1

QZ = - lOg p(y|BPostMean)a
Q3 = - lOg p(y|BPostMedian);
Q4 = - lOg p(y|BPostMode)a

L
1
Q=-7> log p(y|B{trc):
=1

Qs = —Median {|ogp(y|ﬁ,‘f,)CMC),z —1,..., L} .

where | =1,..., L draws of MCMC parameters 6) are collected.
» Introduce two phantom boundary models of best and worst fit
Q(Mi41) = 0 and Q(Mo) > max{Q(Mr), ..., Q(My)}.
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ExXAMPLE: p* vS ¢ pLOT (BAFM)

p* based on Q6. N = 200.
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SIMULATION OF MODEL SELECTION PERFORMANCE

Simulated true model

SimID  Truth T1, T2, T3 01,0>,0s
1 bp0 1x1077, -, — 05, —, —
2 bp1l 1 x 10 17 ,5x 107Y, - 05,07, —
3 bpl 10717, ,5x 107, 0.5,1.5, —
4 bp2 1 X 10 7] ,8x 10~ 7] ,1.8x1071°  0.3,1.0,3.0
5 bp2 1x10~ 17 ,8x 10~ 17 ,1.8%x 107  0.3,0.7,0.9

Results

SimID  Truth DIChean DIChedian  DICioge  BF BAFM
1 bp0 0.51 0.43 0.41 0.23 1.00 (Q4)
2 bpl 0.69 0.83 0.84 0.29 0.70 (Q4)
3 bpl 0.93 0.96 0.99 0.49 0.70 (Q4)
4 bp2 0.90 0.94 0.99 0.53 1.00 (Q4)
5 bp2 0.67 0.78 0.85 0.34 0.80 (@)

TABLE: Proportion of correctly selecting true model based on

DIC at posterior mean, median, mode, BF with harmonic mean
approximation, and Bayesian Adaptive Fence Method for best performing
measure Q with automatic peak detection. 28,44



BAFM ISSUES

» Which criterion measure Q to use? Complete likelihood is
unknown

» Middle peak does not always exist. Cannot select one best
model uniquely

» Very computationally intensive. Need to run MCMC for each
bootstrap re-sample
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VALIDATING BAYESIAN COMPUTATION

Given the complexity of the hierarchical model and computation, it
is important to validate that everything works correctly: a
self-consistency check.

PROCEDURE:

1. Simulate parameters from the prior, and data from the model,
given those parameters

2. Fit the model to obtain posterior intervals

3. Record whether or not the ‘true’ value of the parameter was
within the interval

4. Repeat steps 1, 2, & 3 a large number of times, and calculate
the average coverage

= The average and nominal coverages should be equal.

These validation checks are extremely important when dealing with
complex procedures.
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MODEL VALIDATION

90% Posterior intervals vs. Truth (200 datasets) Actual vs. Nominal Coverage (200 datasets)
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FIGURE: (Left) Posterior 90% intervals of 71 = S, show reasonable
coverage roughly 90% of the time, when nominal coverage is set to 90%.
(Right) Average coverage probabilities for each parameter is within the
expected bounds at each nominal probability. 32/44



COMPUTATIONAL DETAILS

The Gibbs sampler consists of five steps:
[N|n79]a [9|n, N,Sob577—] [T|n7 N,evsobszobsaLobstobs]a
[Sobs|N7 0,7, lobs, Yggst, os,gi, Bobs, Lobs, Eobs] )

src| ytot
[ obs ob57 ob57 obSanb57Iobs;50bs]-

> Sample the total number of sources, N, (Numerical Integration):

MNhﬁx(g>HwWyﬂ—FWJDW”HNNHN&MNﬁJ)

F(N + an) 1
“TIN=n+1) \by+1

N
) @ (0 ey

> The marginal probability of observing a source 7(6,7) is
pre-computed via the numerical integration.

w(0,7) = /g(S,-, Bi L1, E) - p(Sil0.7) - p(By, Li, ;) dS; dB; dL; dE;.
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COMPUTATIONAL DETAILS CONT. ..

The Gibbs sampler consists of five steps:
[N|n, 9], [0|n, Nasobs>7-]7 [T|n7 N79750b57Bob5;Lob57Eobs],
[Sobs|N7 0,7, lobs, Yggst, ;[;::; Bobs, Lobs; Eobs] )

src| \stot
[ olgs‘ Yobsa Bobsa Lobs» Eobsa Iobsa Sobs} .

> Sample the power-law slope, 6, (Metropolis Hastings using a
Normal-proposal):

p(0]-) o< p(8) p(Sobs|N,0,7) - (1—m(0, 7)) """
(N—n) _ . Si
x (1 —m(0,7)) - Gamma (9, a+n b+ Z log (T)>

> Sample the observed photon counts Y3¢ .. i=1,...,m

p (Y7l ) oc p(Y7 |V, i, Bi, Li, i)

. (S, B, Li, Ei)
~ Bin [ Y& vt AT
m(’ o ’A(S;,B;,L,-,E;)+k(Bi’LivE"))
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COMPUTATIONAL DETAILS CONT. ..

> Sample the minimum flux 7 (Metropolis Hastings using a
Truncated-Normal-proposal after log-transformation):

p(T| ! ) S8 p(T) : p(e) : p(N) : p(BobSa Lob57 Eobs)
-p (n7 5obs, lobs|N7 9; T, BobSa Lobs> Eobs)
o Gamma (7; am + n0, bm) - (1 — (0, 7))V ™" Liocr<cny

p(n =log(7)|-)=e€"-p(r=¢€"|-)
oc en0t2nth) . o=bne® (1 — 70,7 = €M)V ™" Ty clog(en)}-
> Sample the fluxes Seps,i, i = 1,...,n (Metropolis Hastings using a
Normal-proposal):
p(Sil-) o< p(SiIN,0,7)-p (I = 1|5, By, L, E;)-p (Y| S, By, Li, Ei)-
p (YE Y S, By, L, E)
~ Pareto(S;; 0,7)-g(Si, Bi, Li, E;)-Pois(Y{°*; \(S;, Bi, L, E;))+k(B;, L, E;))
XS, B, Li, E}) )
(S, Bi, Li, E)) + k(Bj, Li, Ej)

. B Y;rc; Y'tot’
mn ( i i N
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COMPUTATIONAL DETAILS CONT.

P> Sample 0 = (04, . . ., 9,,,)T: (Metropolis-Hastings using a Normal-proposal)
N—
p(6] ) o [(1 = (o, TNV -
m 7—+1 m S;
H Gamma | 6;; aj +n(j) — 1, by +I(jspy log <J—> [n(i)H{,2j+1}] + Z log <4> s
j=1 T/ = i€Z(j) 7j

where Z(j) = {i: 7; < s; < Tj41} and n(j) is the cardinality of Z(j) i.e., Z(j) (n(j)) denotes the set
(number) of source indices whose flux is contained in the interval corresponding to the j-th mixture

component.
P Sample the break-points ¥ = (2, .-+, -rm)T (Metropolis-Hastings based on original transformed scale
n; = h(7|T1) = Iog(rj - -rj_l),j =2,...,m)

m

Z } :| H{7'1<7'2< <Tm}

Jj=2

m (i— - () —(6:
s ) o (6")(5[) o

- oy <min(sys.ssn)} | 0
il \ T ezt \ T T {mn (s15---55n)}

I\H»—t

p(nl) = p(h(F|T)I) o [(1 = m(6, )M "] - exp {7
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COMPUTATIONAL DETAILS CONT. ..

Fluxes of missing sources can (optionally) be imputed to produce
posterior draws of a ‘corrected’ log N — log S

> Impute missing fluxes Sps i, i =1,...,n (Rejection Sampling):
(Bi, Li, Ei) ~ p(B;, L, E;)
5i|n7 N,Q,T, Biv Liv Ei, Ii =0
~ (1 - g(Si, Bj, Li, E;)) - Pareto(S;; 0, 7).
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COMPUTATIONAL NOTES

Some important things to note:

» For single power-law models computation is relatively fast
(few hours), and insensitive to the number of missing sources

» The fluxes of the missing sources need not be imputed

» Fluxes of missing sources can (optionally) be imputed to
produce posterior draws of a ‘corrected’ log N — log S

» Computation for the broken-power law model is slower (day)

» Generalized mixtures of Pareto’s (or other forms) require only
minor modifications of general scheme
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APPLICATION: CDFN X-RAYS

Application: X-ray emission from point sources in the CHANDRA
Deep Field North (CDFN) survey.

> The deepest 0.5-8.0 keV band survey ever made
> 2 Ms exposure covering field of 448 sq. arcmin

» Subsample sources based on off-axis angle threshold of 8
arcmin

Dataset consists of 225 observed sources
Priors: a =10, b = 10, E[N] = 300, Var(N) = 1002,

E[r] =15 x 107, Var(r;) = (9.0 x 10718)2,
E [log(m2 — 71)] = —38, Var(log(m2 — 11)) = 0.72
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CDFN log(N)-log(S)




Method bp0 bpl bp2 bp0g=1| BAFM Sel.
DIC.Mean 1838.3 1830.8 1838.6 1873.3 Q1 bp2
DIC.Median 1842.2 1834.3 1838.6 1876.9 Q> bp2
DIC.Mode 1839.7 1810.1 1827.3 1860.4 Q3 bp2
DIC.V 1880.5 1865.2 1851.3 1920.4 Qs bp2
WAIC1 17159 1702.6 1698.9 1746.3 @5 bp2
WAIC1 17959 1781.8 1778.8 1826.2 Qs bp2

TABLE: DIC, WAIC, BAFM for CDFN analysis.



bp0 bpl bp2 g=1

# obssrc 034 0.08 (0.63) 0.07 (0.08)  0.23

Minimum ph ct 0.25 0.41 (0.40) 0.40 (0.41) 0.36
Maximum phct  0.08 0.23 (0.26) 0.22 (.24)  0.08

Median ph ct 0.17 0.05 (0.10) 0.03 (0.05)  0.40

Lower quartile of ph cts 0.11 0.17 (0.23) 0.17 (0.17)  0.28
Upper quantile of ph cts  0.14 0.08 (0.12) 0.04 (0.07)  0.32
IQR of ph cts  0.15 0.08 (0.11) 0.04 (0.07)  0.32

Crude estimate of R 0.10 0.32(0.33) 0.31(0.31) 0.15

# obs src vs. Median ph ct 0.68 0.23 (0.22) 0.15(0.20)  0.65
Lower vs. Upper quartile  0.78 0.26 (0.26) 0.16 (0.21) 0.75
# obs sources vs. IQR  0.57 0.20 (0.20) 0.13 (0.20)  0.72
# obs sources vs. R>  0.12 0.59 (0.59) 0.59 (0.60)  0.18

TABLE: Posterior predictive p-values for CDFN analysis. (Adjusted for

low-flux*)



CDFN CONCLUSIONS

Estimate  95% (central) | (Wong et.al.,2014)
Parameter Mean (Med) interval Estimate SE
o 0.64 (0.59) (0.40,1.09) 0.483 0.060
6> 0.62 (0.56) (0.36,1.18) 0.854 0.224
05 0.83 (0.82) (0.67,1.03)
logyo(T1) -16.45 (-16.44) (-16.60,-16.35) -16.344  0.030
logyo(m2) -16.00 (-16.11)  (-16.36,-15.61) 15,657 0.271
logyo(r3) -15.72 (-15.74)  (-16.00,-15.47)
N 281 (280) (259,312)

TABLE: Parameter estimates for CDFN analysis based on bp2 model.
Compared to competing method for estimation of the number of
breakpoints and parameters via interwoven EM (Wong et.al., 2014)
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CDFN CONCLUSIONS

Estimated slope of 0.46 (median), 0.487 (mean)
95% (central) interval = (0.312,0.681)

Wong et al. (2014) estimated broken power-law slopes of
d = (0.483,0.854).

Estimated missing data fraction 24%, interval:(0.0, 28.25%)

Evidence of a possible break in the power-law in the observed
log N —log S.

v

v

v

v

v

Note: The ignorable analysis gives a posterior median of 0.363,
mean of 0.367, and 95% interval (0.248,0.511).
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