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Hierarchical Modelling

• Many data are of hierarchical structure, which
motivates hierarchical models.

• Hierarchical modelling usually produces a
shrinkage estimate, which is widely considered to
be more reasonable.

• Also, it can reduce the mean squared errors.

• However, fitting a hierarchical model may be
computationally intensive.
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Hierarchical Models

• One commonly used and simple hierarchical
model is:

Yi = µi + εi ; εi ∼ N(0, σ2i ), (1)

µi ∼ N(γ, τ2), i = 1, · · · , I . (2)

in which:

• εi s are independent of µj s and σ2i s are known.

• µi s are group effects, γ pooling effects, and τ2

between-group variation.

• What we want to learn from this model is µi s and
γ and τ2.
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Statistical Inference to Hierarchical Models

• Commonly used ways are Maximum likelihood,
fully Bayesian and empirical Bayes.

• MLE: Find the MLE of hyper-parameters by
maximising their likelihood function;

• Fully Bayesian: Find the fully joint posterior for
all parameters and make inferences from this
postrior, usually via MCMC;

• Empirical Bayesian: Find the MLE or MAP of
hyper-parameters by maximising their likelihood
function and then fit group-level parameters in a
general Bayesian way.
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Pros and Cons

• Fully Bayesian will yield a shrinkage estimator for
all µi s. However, it often brings computational
challenges, eg. high-dimensional sampling.

• Empirical Bayes is the combination of the
previous two. It will produce a shrinkage
estimator but not much as fully Bayesian, also
less intensive than it.
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Fully Bayesian Approach

We fit a dataset with these two approaches and compare the
result later.
Fully Bayesian: The joint posterior density

p(γ, τ2, µ1, · · · , µI |Y) ∝ p(γ, τ2)
I∏

i=1

N(Yi |µi , σi )N(µi |γ, τ2).
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Shrinkage Estimator

• For brevity, we take the hyper-prior p(γ, τ2) ∝ 1.
Given γ and τ2, the conditional densities for µi s
are

p(µi |γ, τ2,Y) ∼ N(µ̂i , σ̂
2
i ), (3)

with µ̂i =
τ2Yi+σ2

i γ

σ2
i +τ2

and σ̂2i =
σ2

i τ
2

σ2
i +τ2

.

p(γ|τ2, µ1, · · · , µI ,Y) ∼ N(
1

I

I∑
i=1

µi ,
τ2

n
),

p(τ2|γ, µ1, · · · , µI ,Y) ∼ inv − Γ(
n − 2

2
,

1

2

I∑
i=1

(µi − γ)2).
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Empirical Bayes Estimation

• It proceeds by obtaining an estimation for hyper
parameters γ and τ2 first. Usually, a MLE or
MAP estimator. Then, µi s are fitted in a general
Bayesian framework.

• EM-type algorithms can be employed to find the
MLE of hyper-parameters. µi s are treated as
missing data.

The log complete data likelihood function:

L(γ, τ2|Y, µ1, · · · , µI ) =
I∑

i=1

[
− 1

2
log(2πσ2i )− 1

2σ2i
(Yi − µi )

2

−1

2
log(2πτ2)− 1

2τ2
(µi − γ)2

]
.
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EM algorithm

• Given the t-th iteration γ(t) and τ2(t), conditional
distribution of µi s are normal with mean

E (µi |Y, γ(t), τ2(t)) =
τ2(t)Yi+σ2

i γ
(t)

σ2
i +τ2(t)

and variance

Var(µi |Y, γ(t), τ2(t)) =
τ2(t)σ2

i

σ2
i +τ2(t)

.

• The t + 1-st update:

γ(t+1) =
1

I

I∑
i=1

E (µi |Y, γ(t), τ2(t));

τ2(t+1) =
1

I

I∑
i=1

E [(µi − γ(t+1))2|Y, γ(t), τ2(t)].
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One Example

• We take one dataset in Rstan (with modifications
on σ). It is a survey conducted by ETS to check
the effect of coaching on students’ performance
in eight states in US. The dataset is presented as
follows:
Y 28 8 -3 7 -1 1 18 12

σ 5 1 5 2 3 1 2 3

• The hierarchical model:

Yi = µi + εi ; εi ∼ N(0, σ2i ),

µi ∼ N(γ, τ2), i = 1, · · · , I .
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Results

We use Rstan to fit this hierarchical model in a fully Bayesian
way and code in R to find the MLE of hyper-parameters by EM
algorithm.
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Figure 1 : Inferences on γ and τ 2 from fully Bayesian (Histograms)
and empirical Bayes (Red line)
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Figure 2 : Comparisons on indivual means from fully Bayesian
(Histograms) and empirical Bayes (Red line)
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Diagnostics about EM algorithm

8.55 8.60 8.65 8.70 8.75

70
90

11
0

Trace plot of EM updates

gamma

ta
uS

qu
ar

e

0 100 200 300 400 500

8.
55

8.
65

8.
75

iterations

ga
m

m
a

8.535824

0 100 200 300 400 500

70
90

11
0

iterations

ta
uS

qu
ar

e

69.78020

0 50 100 150 2000.
0e

+
00

1.
5e

−
13

profile likelihood function of tauSquare

tauSquare

pr
of

ile
 li

ke
lih

oo
d

69.76

Figure 3 : Diagnostic pictures about EM algorithm
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Contour plot of Marginal likelihood
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Figure 4 : Contour plot of marginal likelihood of γ and τ 2
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Fitting the Distributions of Age of Halo WDs

• The goal here is the distribution of the population
age of galactic halo WDs.

• µ the mean of the population logAge.

• Here is the simple hierarchical structure:

population
age

WDnWD1 WD2
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Mathematical Formula

• For the i-th star, denote its logAge, distance
modulus, metallicity, mass as Ai ,Di ,Ti ,Mi .

• The data available is its photometry, Yi , the
brightness on a range of wavelengths.

• Assume that the logAge of the Galactic halo is
normal with mean γ and variance τ2.

(Yi |Ai ,Di ,Ti ,Mi ) ∼ N(G (Ai ,Di ,Ti ,Mi ),Σi );

Ai ∼ N(γ, τ2), i = 1, · · · , I ,

with G (·) is a computer model and Σi s are known from
astronomers. Also, astronomers have very good priors on other
parameters, Di ,Ti ,Mi , i = 1, · · · , I .
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Photometry Data

Photometry is the intensity of an astronomical object’s
electromagnetic radiation, over a braod band of wavelengths.

Figure 5 : The photometry over several filters.
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Fitting one Star at a Time
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Empirical Bayes Fitting

BASE9 can fit one star at a time, namely, it can draw a very
good sample from the i-th star’s posterior density for given γ
and τ2:

p(Ai ,Di ,Ti ,Mi |Yi ) ∼ p(Yi |Ai ,Di ,Ti ,Mi )×
p(Ai |γ, τ2)p(Mi )p(Di )p(Ti ),

where p(Ai |γ, τ2), p(Mi ), p(Di ), p(Ti ) are prior densities.
We incorporate this fit-one-at-a-time algorithm in our fitting to
a more complicated hierarchical model.
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Monte Carlo EM algorithm

Monte Carlo EM (MCEM) algorithm is used to find the MLE
of γ and τ2.

MC-step: Given the t-th update γ(t) and τ2(t), draw a
sample of size N,

(A
[j]
i ,D

[j]
i ,M

[j]
i ,T

[j]
i ), j = 1, 2, · · · ,N, i = 1, 2, · · · , I from

its posterior;

E-step: Replace expectations with sample means;

M-step:

γ(t+1) =
1

I · N

I∑
i=1

N∑
j=1

A
[j]
i ;

τ2(t+1) =
1

I · N

I∑
i=1

N∑
j=1

(A
[j]
i − γ

(t+1))2.
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Primary Results
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Figure 6 : Fit 5 stars in a hierarchical model.
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IFMRs

• In stellar evolution, IFMR, initial-final mass
relationship connects the mass of a white dwarf
with the mass of its progenitor in the
main-sequence.

• Commonly used IFMRs: William, Weidemann,
Salaris I and Salaris II.

• Assume Mfinal = f (Minitial ,β), usually f (·) is
taken as linear or piecewise linear.
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Contour plot
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Figure 7 : Contour of the joint distribution of final mass and initial
mass, which contains 95% of the distribution.
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Hierarchical Modelling of IFMRs

(Xi |βi ) ∼ N(G (Ai , θi ,βi ),Σi ), i = 1, 2, · · · , I ;
(βi |ξ,Ψ) ∼ N(ξ,Ψ),

• Σi are known;

• βi s are coefficients in IFMRs;

• We want to learn from some dataset about ξ and
Ψ.
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