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Hierarchical Modelling
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Evolution Many data are of hierarchical structure, which

Shijing Si". motivates hierarchical models.
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e Hierarchical modelling usually produces a
shrinkage estimate, which is widely considered to
be more reasonable.

Introduction

e Also, it can reduce the mean squared errors.

e However, fitting a hierarchical model may be
computationally intensive.



Hierarchical Models
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Shij

Yi = pi +€i; €~ N(an-l?)a (1)
pi~ N(y,72), i =1, 1. (2)

Introduction

in which:

e ¢;s are independent of y;s and J,-2s are known.

e 1u;s are group effects, v pooling effects, and 72
between-group variation.

e What we want to learn from this model is u;s and
v and 72.



Statistical Inference to Hierarchical Models
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Evolution fully Bayesian and empirical Bayes.

s e MLE: Find the MLE of hyper-parameters by
maximising their likelihood function;

on Hippe

e Fully Bayesian: Find the fully joint posterior for
all parameters and make inferences from this
postrior, usually via MCMC,

e Empirical Bayesian: Find the MLE or MAP of
hyper-parameters by maximising their likelihood
function and then fit group-level parameters in a
general Bayesian way.
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Shijing Si*, Fully Bayesian will yield a shrinkage estimator for
Dyke, Ted all pis. However, it often brings computational
om (Ffipet challenges, eg. high-dimensional sampling.

Introduction e Empirical Bayes is the combination of the
previous two. It will produce a shrinkage
estimator but not much as fully Bayesian, also
less intensive than it.
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Shijing Si We fit a dataset with these two approaches and compare the
boot result later.

o ] Fully Bayesian: The joint posterior density
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I
p(v, 2 g1, lY) o< p(y, 72) [ [ N(Yili, o) N(ily, 7).
i=1



Shrinkage Estimator
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e For brevity, we take the hyper-prior p(7,72) o 1.
Applications

in the Stellar Given 7 and 72, the conditional densities for y;s
Evolution are
Shijing Si
Dyk*, Tec p(/.L,'|’)/,T2,Y) ~ N(ﬂ,,&?), (3)
on Hippel 5 5 2 5
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Empirical Bayes Estimation

Empirical and

e e |t proceeds by obtaining an estimation for hyper

L IE AN parameters v and 72 first. Usually, a MLE or
Applications
in the Stellar MAP estimator. Then, u;s are fitted in a general
Shijing Si*, Bayesian framework.
Dyk*, Te e EM-type algorithms can be employed to find the
on Hibpe MLE of hyper-parameters. ;s are treated as
Introduction miSSing data.

The log complete data likelihood function:

-

L(f}/7 7—2’Y7 M1, 7/1'/ Z |: Iog 271'0'2)

i=1
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EM algorithm

Empirical and

Fully Bayesian
Hierarchical . . . e
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Applications . . . .

in the Stellar distribution of u;s are normal with mean
Evolution

720 Y402~ .
2 0
it & (M ’Y ’Y(t) T (t)) W and variance

2(t) 52
on Hippel Var(,u,,-|Y, 'Y(t)a 7'2(t)) = ﬁ-

Introduction e Thet + 1-st Update:

[a—

I
fy(t+1) — 7 Z E(uilY, ,y(t)7 7_2(1:));
i=1

I
1
2(t+1 t+1 2(t
) — =7 E_ )) Y, 70, 7 ( )].



Example
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Modes : Two e We take one dataset in Rstan (with modifications

Toidia Scley on o). It is a survey conducted by ETS to check
the effect of coaching on students’ performance

in eight states in US. The dataset is presented as

follows:
Y |[28|8|-3|7|-1]1]|18]12

c| 5 |1|5|2|3]1] 2 3
e The hierarchical model:

Shijing Si™,

Example

Yi = wi +ei; €~ N(0,07),
HI'NN(’Y7T2)7 I:]-v al'



Results

Ehasebnll Ve use Rstan to fit this hierarchical model in a fully Bayesian
ully Bayesian

Hierarchical way and code in R to find the MLE of hyper-parameters by EM
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Applications algorithm.
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Figure 2 :  Comparisons on indivual means from fully Bayesian
(Histograms) and empirical Bayes (Red line)
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Figure 4 : Contour plot of marginal likelihood of v and 72



Fitting the Distributions of Age of Halo WDs
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Apitesiftons e The goal here is the distribution of the population

in the Stellar

Evolution age of galactic halo WDs.

e 1 the mean of the population logAge.
e Here is the simple hierarchical structure:

population
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Mathematical Formula
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Magrcies. e For the i-th star, denote its logAge, distance
Applications modulus, metallicity, mass as A;, D;, T;, M;.

in the Stellar

seelution e The data available is its photometry, Y;, the
‘ brightness on a range of wavelengths.
von Hippel e Assume that the logAge of the Galactic halo is

normal with mean ~ and variance 72.

Fitting the (YilAi, Di, Ti, Mj) ~ N(G(A;, Di, T;, M;), %;);

Distributions

of Halo WDs A ~ N(%7_2)’ i=1---.1,

with G(-) is a computer model and X ;s are known from
astronomers. Also, astronomers have very good priors on other
parameters, D;, T;, M;,i=1,--- /.



Photometry Data

el Photometry is the intensity of an astronomical object’s
ully Bayesian

el electromagnetic radiation, over a braod band of wavelengths.
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Figure 5 :  The photometry over several filters.
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Empirical Bayes Fitting
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Toidia Scley BASE9 can fit one star at a time, namely, it can draw a very
volution

good sample from the i-th star's posterior density for given ~
and 72:

Shijing Si™,

p(Ai, Di, Ti, Mi[Y;) ~ p(Yi|Ai, Di, T;, M;)x
p(Aily, 72)p(M;)p(D;)p(T:),

Fitting the

Distributions where p(A;|v,72), p(M;), p(D;), p(T;) are prior densities.
We incorporate this fit-one-at-a-time algorithm in our fitting to
a more complicated hierarchical model.

of Halo WDs



Monte Carlo EM algorithm

SN Monte Carlo EM (MCEM) algorithm is used to find the MLE

Fully Bayesian

Hierarchical of ,7 and 7-2_
Models : Two

Applications

in the Stellar m MC-step: Given the t-th update 4(t) and 72(), draw a
seelution sample of size N,
(AL pUl W Ty =1 0 Nyi=1,2,--- 1 from
its posterior;
m E-step: Replace expectations with sample means;

Shijing Si™,

m M-step:
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i=1 j=1
1 I N 0
2(t+1) _ 1 (t+1))2
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Figure 6 : Fit 5 stars in a hierarchical model.
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Ecuton e In stellar evolution, IFMR, initial-final mass
s relationship connects the mass of a white dwarf
B o e with the mass of its progenitor in the

on Hippel
main-sequence.

e Commonly used IFMRs: William, Weidemann,
Salaris | and Salaris II.

o Assume Mgna = f(Minitiar, 3), usually £(-) is

Fitting the taken as linear or piecewise linear.
Variability in

IFMRs Among

Stellar

Clusters
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Figure 7 :  Contour of the joint distribution of final mass and initial
mass, which contains 95% of the distribution.




Hierarchical Modelling of IFMRs
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Lu\, : (X,'|,3,')NN(G(A,-,H,-,B,-),E,-),i:1,2,--- al;
(Bilg, ) ~ N(¢, ),

e Y ; are known;
e ;s are coefficients in IFMRs;

e We want to learn from some dataset about & and
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