Bayesian Model for Sources Intensities

Lazhi Wang

Statistics Department, Harvard University

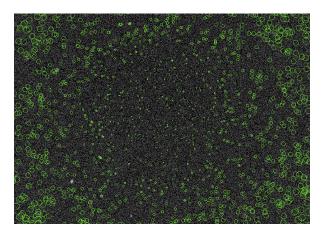
March 3, 2015

Outline

- Background and goals of the project
- 2 Hierarchical Bayesian model
- Frequency properties of the model via extensive simulation studies
- Testing the existence of dark sources:
 - Calculation of test-statistic and posterior predictive p-value
 - Frequency properties of the ppp via simulation study
- Real Data Application

Data

- Y_i , background contaminated photon count in a source region over a period of time \mathcal{T} .
- ullet X, photon count in the exposure of pure background over \mathcal{T} .



Goals of the Project

To develop a fully Bayesian model to infer the distribution of the brightness (luminosity function) of all the sources in a population.

Goals of the Project

To develop a fully Bayesian model to infer the distribution of the brightness (luminosity function) of all the sources in a population.

- ② To identify the existence of "X-ray" dark sources in the population.
 - "X-ray" dark sources: sources that do not generate X-rays.

Basic Hierarchical Bayesian Model

Level I:

$$Y_i = S_i + B_i$$

 $S_i | \lambda_i \sim \text{Poisson}(r_i e_i T \lambda_i)$
 $B_i | \xi \sim \text{Poisson}(a_i T \xi)$
 $X | \xi \sim \text{Poisson}(A_b T \xi)$

- S_i (counts): number of photons from source i in the source region,
- $oldsymbol{\mathcal{B}_i}$ (counts): number of photons from the background in the source region,
- λ_i (counts/s/cm²): the intensity of source i,
- ξ (counts/s/pixels): the intensity of background,
- t (seconds): exposure time,
- e; (cm²): the telescope effective area,
- r_i :proportion of photons from source i expected to fall in source region,
- a_i (pixels): the size of source region i,
- A_b (pixels): the size of background region.

 S_i , B_i , λ_i , ξ are all unobserved/latent, t, e_i , r_i , a_i , A_b are all known constant. Y_i , X are observed data.

Basic Hierarchical Bayesian Model

Level II:

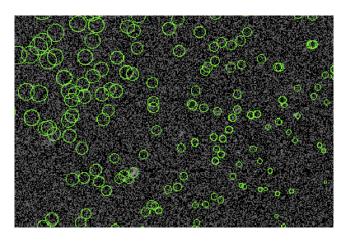
$$\begin{split} \xi &\sim & \mathsf{Gamma}[\mu_0,\theta_0] \\ \lambda_i \big| \mu,\theta,\pi_d \end{split} \begin{cases} = 0 & \text{with probability } \pi_d, \\ \sim & \mathsf{Gamma}[\mu,\theta] & \text{with probability } 1-\pi_d. \end{cases}$$

• Level III: Prior on the hyper-parameters π_d , μ , θ

$$\pi_d \sim extit{Unif}(0,1)$$
 $P(\mu, heta) \propto rac{1}{c_1^2 + (\mu - c_2)^2} rac{1}{c_3^2 + (heta - c_4)^2} extit{I}_{\mu > 0, heta > 0},$

Model Extension I: Overlapping Sources

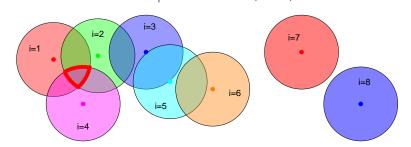
• Some source regions overlap.



Model Extension I: Overlapping Sources

- Notation:
 - s is the set of indices of source regions that defines the segment. For example, the highlighted segment is $s = \{1, 2, 4\}$.
- Level I model:

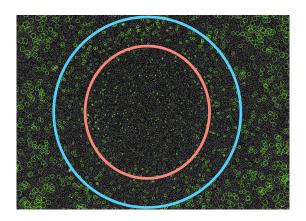
$$egin{aligned} Y_s &= \mathcal{S}_s + \mathcal{B}_s = \sum_{i \in s} \mathcal{S}_{s,i} + \mathcal{B}_s, \ \mathcal{S}_{s,i} ig| \lambda_i &\sim & \mathsf{Poisson}(r_{s,i} e_s \mathcal{T} \lambda_i) \ \mathcal{B}_s ig| \xi &\sim & \mathsf{Poisson}(a_s \mathcal{T} \xi) \end{aligned}$$



Model Extension II: Different Background Intensities

• In our data, the background intensity has an increasing trend from the center to the edge of the telescope.

Projected Angle (arcmin)	0-6	6-8	8-16
Intensity (counts/pixels)	0.0010	0.0104	0.0108



Model Extension II: Different Background Intensities

Notation:

- X_k (counts): number of photons collected in background region k over T seconds
- ξ_k (counts/s/pixels): the background intensity in regions k
- A_k (pixels): the size of background region k
- \mathcal{R}_k : the collection of source segments in the background region k

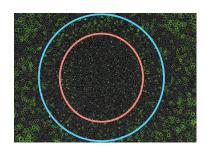
Model:

• Counts in the pure background:

$$X_k | \xi_k \sim \text{Poisson}(A_k \mathcal{T} \xi_k)$$

• Counts in the source region $s \in \mathcal{R}_k$:

$$B_s | \xi_k \sim \text{Poisson}(a_s \mathcal{T} \xi_k)$$



Simulation Setting

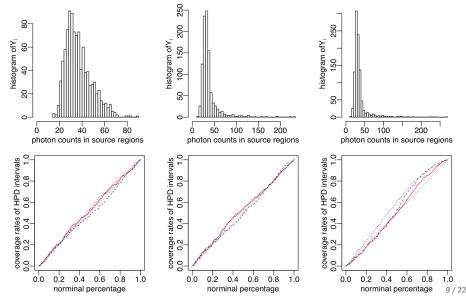
Simulation Settings:

$$Y_i \sim \mathsf{Poisson}(\lambda^* + {m \xi}^*), \; \mathsf{for} \; i = 1, \cdots, 1000$$
 $\lambda^* egin{cases} = 0 & \mathsf{with} \; \mathsf{probability} \; \pi_d, \ \sim \mathsf{Gamma}[\mu^* = 15, {m \theta}^*] & \mathsf{with} \; \mathsf{probability} \; 1 - \pi_d. \end{cases}$ $X \sim \mathsf{Poisson}(2.5 \times 10^5),$

- θ^*, π_d, ξ^* vary at different values:
 - *ξ**: 15, 30
 - θ*: 50, 100, 300, 500, 1000
 - π_d : 0, 0.1, · · · , 0.9
- No overlapping sources
- Homogeneous background

Coverage Rates of 95% HPD Intervals

• $\pi_d = 0.5, \xi^* = 30, \mu^* = 15, \theta^* = 100,500$ and 1000.



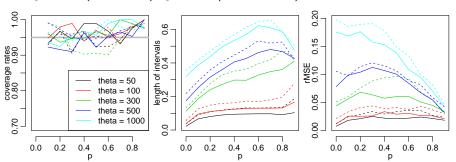
PME and HPD Intervals Estimates of π_d

- 100 replicate datasets for each simulation configuration.
- In each cell, the three summaries are (i) coverage rate of 95% HPD intervals, (ii) average length of intervals, (iii) root MSE

ξ*	θ^*		π_d								
	0	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	50	_	93.4%	96.7%	94.6%	98.9%	98.9%	96.8%	93.2%	97.6%	100%
		0.02	0.07	0.08	0.09	0.09	0.1	0.1	0.1	0.09	0.1
		0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
	100	_	94.8%	97.9%	99%	93.9%	97%	95.1%	96%	97.9%	100%
		0.04	0.09	0.11	0.12	0.12	0.13	0.13	0.13	0.13	0.17
		0.01	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02
15	300	_	96.1%	93.6%	94.7%	94.8%	96.6%	95.6%	100%	98.9%	97.8%
		0.11	0.19	0.24	0.27	0.3	0.3	0.33	0.35	0.36	0.41
		0.04	0.06	0.07	0.06	0.06	0.06	0.06	0.05	0.04	0.03
	500	_	92.3%	91.6%	91%	96.3%	92.2%	95.3%	96.6%	95.3%	100%
		0.17	0.25	0.32	0.36	0.41	0.43	0.46	0.48	0.47	0.43
		0.08	0.1	0.1	0.11	0.11	0.1	0.08	0.07	0.05	0.03
	1000	_	93.5%	92.5%	95.7%	96.7%	95.7%	98.9%	100%	100%	97.8%
		0.32	0.39	0.44	0.5	0.53	0.57	0.62	0.61	0.59	0.48
		0.18	0.17	0.18	0.16	0.15	0.14	0.11	0.09	0.07	0.04

PME and HPD Intervals Estimates of π_d

• $\xi^* = 15$ (solid lines); $\xi^* = 30$ (dashed lines)



Hypothesis Testing for the Existence of Dark Sources

Hypothesis Testing:

$$H_0: \pi_d = 0, \quad H_a: \pi_d > 0.$$

• Reject H_0 if the p-value is low,

p-value
$$= P(T(\mathbb{D}) > T^{obs}|H_0),$$

where $\mathbb{D} \sim H_0$ and $T(\mathbb{D})$ is a test statistic.

Hypothesis Testing for the Existence of Dark Sources

Hypothesis Testing:

$$H_0: \pi_d = 0, \quad H_a: \pi_d > 0.$$

• Reject H_0 if the p-value is low,

$$\mathsf{p\text{-value}} \ = P(T(\mathbb{D}) > T^{obs} \big| H_0),$$
 where $\mathbb{D} \sim H_0$ and $T(\mathbb{D})$ is a test statistic.

• However, $\mathbb{D}|H_0$ is unknown because μ and θ are unknown:

$$\lambda_i | \mu, \theta, H_0 \sim \textit{Gamma}[\mu, \theta].$$

Hypothesis Testing for the Existence of Dark Sources

• Hypothesis Testing:

$$H_0: \pi_d = 0, \quad H_a: \pi_d > 0.$$

• Reject H_0 if the p-value is low,

$$\mathsf{p\text{-value}} \ = P(T(\mathbb{D}) > T^{obs} \big| H_0),$$
 where $\mathbb{D} \sim H_0$ and $T(\mathbb{D})$ is a test statistic.

• However, $\mathbb{D}|H_0$ is unknown because μ and θ are unknown:

$$\lambda_i | \mu, \theta, H_0 \sim \text{Gamma}[\mu, \theta].$$

• Posterior predictive p-value (ppp):

$$egin{aligned} & extit{ppp} &= P(T(\mathbb{D}) > T^{obs} ig| \mathcal{D}^{obs}) \ \ &= \int P(T(\mathbb{D}) > T^{obs} ig| \mu, heta, \pi_d = 0) P(\mu, heta | \mathcal{D}^{obs}, \pi_d = 0) \mathrm{d}\mu \mathrm{d}\theta. \end{aligned}$$

Hypothesis Testing for Existence of Dark Sources

- Estimation of ppp:
 - ① Draw $(\mu^{(t)}, \theta^{(t)})$ from $P(\mu, \theta | \mathcal{D}^{obs}, \pi_d = 0)$ for $t = 1, 2, \dots, m$,
 - ② For each pair $(\mu^{(t)}, \theta^{(t)})$, simulate $\mathbb{D}^{(t)}$ from the null model and calculate $\mathcal{T}^{(t)} = \mathcal{T}(\mathbb{D}^{(t)})$,
 - Stimate ppp by

$$ppp pprox rac{1}{m} \sum_{t=1}^{m} I\left(T^{(t)} > T^{obs}
ight).$$

Hypothesis Testing for Existence of Dark Sources

- Estimation of ppp:
 - ① Draw $(\mu^{(t)}, \theta^{(t)})$ from $P(\mu, \theta | \mathcal{D}^{obs}, \pi_d = 0)$ for $t = 1, 2, \dots, m$,
 - ② For each pair $(\mu^{(t)}, \theta^{(t)})$, simulate $\mathbb{D}^{(t)}$ from the null model and calculate $\mathcal{T}^{(t)} = \mathcal{T}(\mathbb{D}^{(t)})$,
 - Estimate ppp by

$$ppp pprox rac{1}{m} \sum_{t=1}^{m} I\left(T^{(t)} > T^{obs}
ight).$$

Likelihood Ratio Test Statistics:

$$R(\mathbb{D}) = \frac{\sup_{\mu,\theta,\pi_d} L_a(\mu,\theta,\pi_d|\mathbb{D})}{\sup_{\mu,\theta} L_0(\mu,\theta|\mathbb{D})},$$

We use $T(\mathbb{D}) = log(R(\mathbb{D}))$ as the test statistic.

Two simplifications for the LRT:

• To obtain the likelihood $L_a(\mu, \theta, \pi_d | \mathbb{D})$ or $L_0(\mu, \theta | \mathbb{D})$, we need to integrate out all other parameters.

$$P_{\mathsf{a}}(\mathbb{D}\big|\mu,\theta,\pi_{\mathsf{d}}) = \int P(\mathbb{D}\big|\boldsymbol{\xi},\boldsymbol{\lambda})P(\boldsymbol{\xi})P_{\mathsf{a}}(\boldsymbol{\lambda}\big|\mu,\theta,\pi_{\mathsf{d}})d\boldsymbol{\lambda}d\boldsymbol{\xi}.$$

• No close form likelihoods if some source regions overlap and ξ is random.

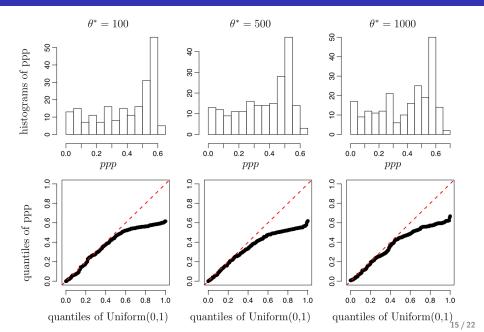
Two simplifications for the LRT:

• To obtain the likelihood $L_a(\mu, \theta, \pi_d | \mathbb{D})$ or $L_0(\mu, \theta | \mathbb{D})$, we need to integrate out all other parameters.

$$P_{\mathsf{a}}(\mathbb{D}\big|\mu,\theta,\pi_{\mathsf{d}}) = \int P(\mathbb{D}\big|\boldsymbol{\xi},\boldsymbol{\lambda})P(\boldsymbol{\xi})P_{\mathsf{a}}(\boldsymbol{\lambda}\big|\mu,\theta,\pi_{\mathsf{d}})d\boldsymbol{\lambda}d\boldsymbol{\xi}.$$

- No close form likelihoods if some source regions overlap and ξ is random.
- Two simplifications in the calculation of likelihoods:
 - **1** Simplification 1: Plug in $A_k \hat{\xi}_k t = X_k$.
 - Hardly changes the posterior distribution of hyper-parameters!
 - ② Simplification 2: Likelihoods are calculated based on non-overlapping sources \mathbb{D}^* : $L_a(\mu, \theta, \pi_d | \mathbb{D}^*)$ and $L_0(\mu, \theta | \mathbb{D}^*)$
- $T(\mathbb{D}^*) = log(R(\mathbb{D}^*))$ is still a valid statistic.

Simulation Study: Distribution of ppp under H_0



Simulation Study: Power of the Test

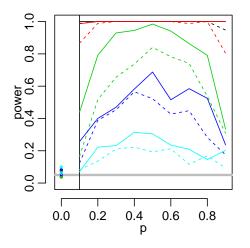
Table 3: The rejection rates of our hypothesis testing procedure.

ξ*	θ^*	π_d									
		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
15	50	6.8%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	100	3.7%	98.7%	100%	100%	100%	100%	100%	100%	100%	100%
	300	3.9%	43.9%	79.2%	93%	94.5%	98.5%	94.1%	86.4%	79.1%	33.3%
	500	6.3%	25.7%	40%	47%	58.2%	68.8%	51.6%	58.5%	52.5%	23.6%
	1000	6.1%	6.9%	22.2%	23.2%	31.4%	30.4%	23.5%	20.9%	14.5%	20.3%
30	50	4.1%	98.9%	100%	100%	100%	100%	100%	100%	100%	94.7%
	100	7.8%	86.7%	98.9%	100%	100%	100%	100%	98.8%	100%	80.3%
	300	6.9%	16.5%	51.7%	65.6%	73.7%	84%	78.3%	74.1%	53.7%	30.9%
	500	5.2%	12.4%	38.8%	45.4%	56.5%	52.2%	42.7%	44.8%	28.3%	17.4%
	1000	6.2%	8.3%	13.6%	21.1%	22.2%	19.3%	21.2%	11.6%	16.9%	9.3%

^{*} Based on 100 replications.

Simulation Study: Power of the Test

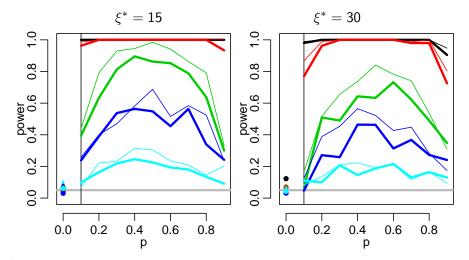
• $\xi^* = 15$ (solid lines); $\xi^* = 30$ (dashed lines)



^{*} Based on 100 replications.

Simulation Study: Power of the Test

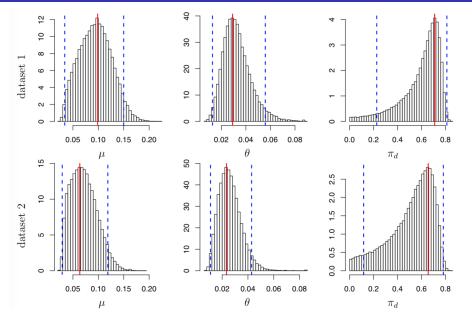
- thin lines: all the data are used to calculate the test statistic
- thick lines: 80% of the data are used to calculate T.



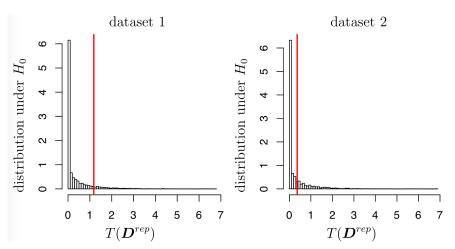
^{*} Based on 100 replications.

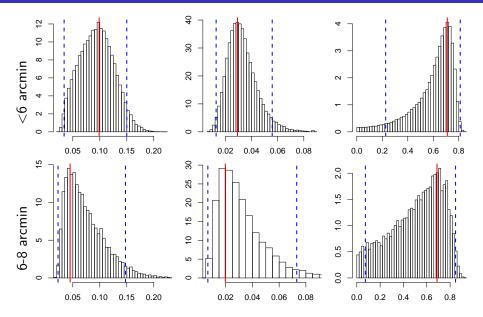
Real Data: subsets of the Chandra/HRC-I observation of the stellar open cluster, NGC 2516.

- Dataset 1:
 - 649 sources within 6 arcmin from the center of the field
 - 525 non-overlapping sources
 - ullet average source regions pprox 1400 pixels
 - background is assumed to be spatially uniform
- Dataset 2:
 - 1169 sources within 8 arcmin from the center of the field
 - 747 non-overlapping sources
 - average source regions \approx 3847 pixels
 - background is assumed to be piecewise uniform (<6 and 6-8 arcmin)
 - data between 6-8 arcmin from the center of the field:
 - 520 source
 - 227 non-overlapping sources
 - average source regions \approx 6900 pixels



- Dataset 1: $T(D^{obs}) = 1.181$ and $ppp \approx 8.9\%$.
- Dataset 2: $T(D^{obs}) = 0.363$ and $ppp \approx 23.2\%$.





• If we compute the likelihoods based on the 227 non-overlapping sources between 6-8 arcmin from the center of the field,

$$T^{obs}=0.$$

