Separating image structures via graph-based seeded region growing

Minjie Fan (UC Davis)

Advisor: Thomas C.M. Lee

Collaborators: Vinay Kashyap, Andreas Zezas

November 4, 2014

- Introduction
- 2 Method

- Oata analysis
- 4 Discussion

2 / 24

Data description

- X-ray observatory data: spatial coordinates and energy of photons detected.
- Binning the data gives us an X-ray image.

Figure: The X-ray image obtained by binning the data (in log-scale).

Data description

- X-ray observatory data: spatial coordinates and energy of photons detected.
- Binning the data gives us an X-ray image.
- Shows point sources and extended sources.

Figure: The X-ray image obtained by binning the data (in log-scale).

Data description

- X-ray observatory data: spatial coordinates and energy of photons detected.
- Binning the data gives us an X-ray image.
- Shows point sources and extended sources.
- Our task: separate the structure of sources from the background.

Figure: The X-ray image obtained by binning the data (in log-scale).

Inhomogeneous Poisson process

- Assumption: the detected photons follow an inhomogeneous Poisson process with density $\lambda(y)$.
- For any set A, $N(A) \sim \mathsf{Pois}\left(\int_A \lambda(y) dy\right)$.
- N(A): the number of photons contained in set A.

Figure: A homogeneous Poisson process (left) and an inhomogeneous Poisson process (right). (Credit: Mahling et al.)

Inhomogeneous Poisson process

- Assumption: the detected photons follow an inhomogeneous Poisson process with density $\lambda(y)$.
- For any set A, $N(A) \sim \mathsf{Pois}\left(\int_A \lambda(y) dy\right)$.
- N(A): the number of photons contained in set A.
- We denote these photons as $\{p_1, p_2, \cdots, p_n\}$ as an realization of the Poisson process.

Figure : A homogeneous Poisson process (left) and an inhomogeneous Poisson process (right). (Credit: Mahling et al.)

Voronoi tessellation

- Imagine that there are n points on the plane.
- Divides the plane into n cells $\{C_1, C_2, \cdots, C_n\}$ such that cell C_i contains all locations closer to point p_i than to any other point.

Figure : An example of Voronoi tessellation (left) and Delaunay triangulation (right).

Voronoi tessellation

- Imagine that there are *n* points on the plane.
- Divides the plane into n cells $\{C_1, C_2, \cdots, C_n\}$ such that cell C_i contains all locations closer to point p_i than to any other point.
- Delaunay triangulation: the dual graph of Voronoi tessellation.

Figure : An example of Voronoi tessellation (left) and Delaunay triangulation (right).

6 / 24

Voronoi estimator

- Voronoi estimator: $\hat{\lambda}(y) = 1/\mu(C_i)$, where $y \in C_i$.
- $\mu(\cdot)$ is the Lebesgue measure on \mathcal{R}^2 (i.e., area).

Voronoi estimator

- Voronoi estimator: $\hat{\lambda}(y) = 1/\mu(C_i)$, where $y \in C_i$.
- $\mu(\cdot)$ is the Lebesgue measure on \mathcal{R}^2 (i.e., area).
- Barr et al. (2010) has shown that approximately $E(\hat{\lambda}(y)) = \lambda(y)$.

Voronoi estimator

- Voronoi estimator: $\hat{\lambda}(y) = 1/\mu(C_i)$, where $y \in C_i$.
- $\mu(\cdot)$ is the Lebesgue measure on \mathcal{R}^2 (i.e., area).
- Barr et al. (2010) has shown that approximately $E(\hat{\lambda}(y)) = \lambda(y)$.
- Construct the following graph:

Figure: The graph constructed (each node has a value).

Graph-based seeded region growing (G-SRG)

- The SRG was first proposed by Adams et al. (1994).
- It is an algorithm used for image segmentation: separates an image into several regions such that each region is composed by connected pixels with similar values.
- We extend the usage of it from images to graphs.

 Imagine that there is a graph, and each node of it has been assigned a value.

 Place a set of seeds in the graph, where each seed can be a single node or a set of connected nodes.

 Grows these seeds into regions by successively adding neighboring nodes.

 Finishes when all nodes in the graph are assigned to one (and only one) region.

The growing strategy

 Implicitly assumes that nodes from the same region share similar values.

The growing strategy

- Implicitly assumes that nodes from the same region share similar values.
- In detail, it chooses the pair of a growing region and its neighboring node such that the following criterion is minimized:

$$\delta(x,R) = \left| g(x) - \frac{\sum_{i} A(r_i)g(r_i)}{\sum_{i} A(r_i)} \right|.$$

• $g(\cdot)$: a function mapping a node index to its value. r_i : the *i*-th element of region R. $A(r_i)$: the area of the Voronoi cell containing r_i .

How to specify the seeds?

- The seeds of sources:
 - Use the algorithm called Mexican-Hat Wavelet source detection (wavdetect), which is implemented in CIAO 4.6.
 - Gives the location of the center of each source.

How to specify the seeds?

- The seeds of sources:
 - Use the algorithm called Mexican-Hat Wavelet source detection (wavdetect), which is implemented in CIAO 4.6.
 - Gives the location of the center of each source.
 - We specify nearby nodes as the seeds of sources.

How to specify the seeds?

- The seeds of sources:
 - Use the algorithm called Mexican-Hat Wavelet source detection (wavdetect), which is implemented in CIAO 4.6.
 - Gives the location of the center of each source.
 - We specify nearby nodes as the seeds of sources.
- The background seeds: they can be just specified manually.

Example one: two point sources

Figure : Region of interest (within the rectangle).

Figure : Region of interest after zooming in.

Example one: two point sources (cont.)

Figure: Graph constructed by Delaunay triangulation (after log transformation).

Figure : Seeds specified by wavdetect (three red dots).

Example one: two point sources (cont.)

Figure : Result of G-SRG (clustering of photons)

Figure : Result of G-SRG (clustering of Voronoi cells)

Example two: two embedded point sources in a field of structured extended emission

Figure: Region of interest (within the rectangle).

Figure : Region of interest after zooming in.

Example two: two embedded point sources in a field of structured extended emission (cont.)

1000

Figure: Graph constructed by Delaunay triangulation (after log transformation).

Figure : Seeds specified by wavdetect (four red dots).

Example two: two embedded point sources in a field of structured extended emission (cont.)

Figure : Result of G-SRG (clustering of photons)

Figure : Result of G-SRG (clustering of Voronoi cells)

Pros and Cons

Pros:

- Robustness: the result is not affected by the parameters, e.g., the bin size and the location of the background seeds.
- Fast computation: the computational speed depends on the number of photons. The time complexity of Voronoi tessellation is $O(n\log n)$. The time complexity of G-SRG is at most $O(n^2)$. (On macbook, 10 seconds for n=1500.)

Pros and Cons

Pros:

- Robustness: the result is not affected by the parameters, e.g., the bin size and the location of the background seeds.
- Fast computation: the computational speed depends on the number of photons. The time complexity of Voronoi tessellation is $O(n \log n)$. The time complexity of G-SRG is at most $O(n^2)$. (On macbook, 10 seconds for n=1500.)

Cons:

- G-SRG is an ad-hoc method, which lacks a theoretical support.
- It requires the specification of the seeds of sources, which affects the outcome of G-SRG significantly.

References I

R. Adams and L. Bischof.

Seeded region growing.

IEEE Trans. Pattern Anal. Mach. Intell., 16(6):641-647, June 1994.

C. D. Barr and F. P. Schoenberg.

On the voronoi estimator for the intensity of an inhomogeneous planar poisson process.

Biometrika, 97(4):977-984, 2010.

H. Ebeling and G. Wiedenmann.

Detecting structure in two dimensions combining voronoi tessellation and percolation.

Phys. Rev. E, 47:704-710, Jan 1993.

References II

P. E. Freeman, V. Kashyap, R. Rosner, and D. Q. Lamb. A wavelet-based algorithm for the spatial analysis of poisson data. The Astrophysical Journal Supplement Series, 138(1):185, 2002.