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Astro-Statistics
DvD: “Statistics applied to Astronomy” 

!
!

Astro perspective: develop algorithms to infer astronomical truth 
Keep astronomers from fooling themselves 
!
Astronomical data are generally cleaner – there is less uncorrectable bias 
Loads of BIG data 
Some unique circumstances like well-defined calibration 
One-shot experiments that require Bayesian analyses 
High-energy datasets doubly simpler, being recordings of a Poisson point process



Astronomy

https://www.google.com/search?q=Astronomy&espv=2&source=lnms&tbm=isch&sa=X&ei=DtQEVMj-G4HwgwTQ1IDgBA&ved=0CAcQ_AUoAg&biw=1398&bih=983
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High-Energy Astrophysics

Fermi

X-rays and Gamma-rays  < 10-6 cm or > 2x1016 Hz 
Not visible from the ground - Space-based observations
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• Stellar Coronae 
• Supernova remnants 
• Galactic outflows  
• Clusters of galaxies  
• Compact objects: 
  neutron stars,  
  accreting black holes, 
  supermassive black holes  
• Relativistic jets 
• GRBs 
• etc… 

 Sources of High-Energy Radiation
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Data in High-Energy Astrophysics

• X-ray and γ-ray data count photons => Poisson in nature 
• Complex physics  and data collection 
• Data may exhibit Spectral, Temporal and Spatial variations

Crab Nebula - variations during 6 month of snap-shot observations with Chandra X-ray Observatory
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Data Collection in Space

Astronomical 
Object

!
Telescope + Detectors 

!
Interstellar Medium

Chandra X-ray Observatory

PhysicsLoss of signal 
but also imprints 
information

Measurement Process 
Inefficient data collection Process 
Instrument characteristics 
Instrument Calibration 
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Data Collection
• Data are recorded for each arriving 

photon: 
• the (2-dimensional) location - sky coordinates 
• the photon energy 
• the arrival time 

• All variables are discrete 
• High resolution -> finer discretization, 
• e.g., 4096 x 4096 spatial or up to 16384 

spectral bins 
• Table with photon counts for: 

• Spectral analysis - 1D 
• Spatial analysis - 2D 
• Timing analysis - 1D

Energy Spectra 1D

Chandra X-ray Image
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Instrumental Effects:  
Recording inefficiency

               
• Image:  

• exposure map  
“sensitivity to photons per area” 
!

• Spectrum:  
• effective area (ARF) 
“sensitivity to photons per energy” 
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Instrumental Effects:  
Blurring

• Image 
• point source observed size 
depends on the source location on the 
detector  
• “blurring” is described by a point 
spread function (PSF) 
!

• Spectrum 
• photon energy is “blurred” 
• probability of detecting photon at 
given energy in given detector channel 
is described by a redistribution matrix 
(RMF) 
!
 

RMF

Detector channels
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Challenges
• Sparse, locally saturating, Poisson data  
• Instrumental effects  
• Source Detection in Deep Images 
• Irregular extended structures  
• Source boundaries 
• Complex physical models 
• Non-periodic, stochastic variability

Chandra X-ray Observatory

Fermi LAT
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CHASC was founded in 1997 



BLoCXS 
CJ Shen / Chris Hans / Rostislav Protassov / Yaming Yu / Taeyoung Park / Hyunsook Lee / Jin Xu / Shandong Min

van Dyk, D. A., Connors, A., Kashyap, V. L., Siemiginowska, A. (2001)   
Analysis of Energy Spectra with Low Photon Counts via Bayesian Posterior Simulation.  
The Astrophysical Journal , 548, 224-243. 
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Highly Structured Statistical Models

van Dyk et al. 2001

Model directly the source and data collection, and include statistical  
procedure to fit the resulting highly structured models and address 
the substantial scientific questions

Loss of information

Emitted Spectrum

Observed
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Bayesian Inference

• Complex data collection needs to be included in the 
statistical model:

Expected  
photon  
count

Instrumental  
“blurring” 

* from calibration

Non-homogenous  
stochastic  
censoring 

* from calibration

Physical Source 
Model

Background  
Contamination 

* from separate observation

Observed counts are modeled as independent Poisson 
variables with  λ mean



BLoCXS / ppp 
Rostislav Protassov / Yaming Yu / Taeyoung Park

Protassov LRT  
- plot of LRT distributions 

line detection

F-test was being commonly misused in astro analyses  
because of a lack of appreciation  

of the asymptotic conditions under which it was valid. 
!

posterior predictive p-values for LRTs 
!

Protassov+ 2002, became our most famous paper  
has been cited 301 times

Protassov, R., van Dyk, D. A., Connors, A., Kashyap, V. L. and Siemiginowska, A. (2002).   Statistics: Handle with Care, 
Detecting Multiple Model Components with the Likelihood Ratio Test.  ApJ, 571, 545-559. 

Park, T. van Dyk,  Siemiginowska, A. (2008) -Searching for Narrow Emission Lines in X-ray Spectra: Computation and 
Methods, ApJ. 688, 807 



LRT

» Assumptions of the Likelihood Ratio Test statistics: 
• The null hypothesis must be a special case of the 

alternative  
• The parameter space of the null must be interior of the 

alternative parameter space. 
» The second assumption fails when testing for a spectral 

emission line: 
• When there is no line, the line intensity is zero, it may 

not be negative. 
• The line locations and width of the line do not exist 

when there is no line. They have no values.



LRT distribution histograms

χ2distribution solid line

Simulated 
False positive rates

5% false positive rates 
For the nominal distribution

Narrow line  
at fixed location

Unknown location of the line 
Fixed width

Absorption line

LRT

» Results of three tests compared to the nominal χ2  distribution
Protassov et al. (2002)

IMPORTANT! We do not know the true distribution of the test statistics.



pyBLoCXS / Calibration 
Yaming Yu / Taeyoung Park / Hyunsook Lee / Jin Xu

Foundations of Astronomical inference: 
Measurement 
Significance 
Calibration

Calibration is not perfect, it has known statistical and systematic errors, 
and unknown errors that are only guessed at.

Drake, J.J., et al. 2006, "Monte Carlo processes for including Chandra instrument response uncertainties in parameter 
estimation studies", SPIE Proc. 6270, 49  
Kashyap, V.L., et al. 2008, "How to handle calibration uncertainties in high-energy astrophysics", SPIE Proc. 7016, 21 
Lee, H., et al. 2011, "Accounting for Calibration Uncertainties in X-ray Analysis: Effective Areas in Spectral Fitting", 
ApJ, 731, 126 
Xu, J., et al. 2014, "A Fully Bayesian Method for Jointly Fitting Instrumental Calibration and X-ray Spectral Models", 
ApJ, in press





fitting to simulated data 

f(ε;θ) = θ₃ ε–θ₁ e–θ₂ σ(ε)

pyBLoCXS / Calibration 
Yaming Yu / Taeyoung Park / Hyunsook Lee / Jin Xu / Shandong Min
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fitting to simulated data 

f(ε;θ) = θ₃ ε–θ₁ e–θ₂ σ(ε)
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pyBLoCXS / Calibration 
Yaming Yu / Taeyoung Park / Hyunsook Lee / Jin Xu / Shandong Min



fitting to simulated data 

f(ε;θ) = θ₃ ε–θ₁ e–θ₂ σ(ε)

p(θ|D,A₀) p(A) p(θ|D,A) p(A,θ|D)
p(θ|D,Ai) p(A(θ’),θ|D)

pyBLoCXS / Calibration 
Yaming Yu / Taeyoung Park / Hyunsook Lee / Jin Xu / Shandong Min



EMC2 
David Esch

Bayesian Multi-scale reconstruction of low-counts images

Esch, D.N., Connors, A., Karovska, M., & van Dyk, D.A., 2004,  
An Image Restoration Technique with Error Estimates ApJ, 610



LIRA 
Nathan Stein / Katy McKeough

Significance of irregular structure

McKeough +2014, Stein+ 2014



Hardness Ratios 
Chris Hans / Yue Wu / Taeyoung Park

Park, T., et al. 2006, “Bayesian Estimation of Hardness Ratios: Modeling and Computations”, ApJ, 652, 610

Simplest measure of shape of a spectrum.	


Use counts in passbands, Ci ~ Pois(aiλi + bi), to compute	



p(R=λ₁/λ₂ | Ci)	


p(HR=(λ₁–λ₂)/(λ₁ + λ₂) | Ci)	



p(C=log(R) | Ci)

Posson-Brown et al. 2009

Wargelin 
et al. 2008



Hardness Ratios 
Taeyoung Park

✦ BEHR is used in the Chandra Source Catalog	


✦ Next step: pySALC – infer spectral model parameters directly



Upper Limits 
Jin Xu

Bounds or Limits?	


!

✦ Bounds: Confidence/Credible range estimates on parameters	


✦ Limits: You make an observation, find nothing, and ask at what brightness would 

the source have been detected, and conclude it must be dimmer than that.

Kashyap, V.L., et al. 2010, “On Computing Upper Limits to Source Intensities”, ApJ, 719, 900



Differential Emission Measure 
Hosung Kang / Viktoria Liublinska / Nathan Stein

ful;λ = ∫ dlogT Gul;λ(T,ne) AZ   ne² dV/dlogT

Kashyap, V. & Drake, J.J., 1998, “Markov-Chain Monte Carlo Reconstruction of Emission Measure Distributions: 
Application to Solar Extreme-Ultraviolet Spectra”, ApJ, 503, 450 
Kang, H., et al., 2003, “A Response Matrix Approach to the Reconstruction of Differential Emission Measure”, AAS/
SPD 34, 02.01, BAAS 35, p807 
Kang, H., et al. 2004, “Reconstructing Stellar DEMs from X-ray Spectra”, AAS/HEAD 8.0501 
Kang, H, et al. 2005, “Incorporating Atomic Data Errors in Stellar DEM Reconstruction", in X-Ray Diagnostics of 
Astrophysical PlasmasL Theory, Experiment, and Observation, AIP Conf. Proc., v774, p373



Differential Emission Measure 
Hosung Kang / Viktoria Liublinska / Nathan Stein

ful;λ = ∫ dlogT Gul;λ(T,ne) AZ   ne² dV/dlogT DEM(T)

Kashyap, V. & Drake, J.J., 1998, “Markov-Chain Monte Carlo Reconstruction of Emission Measure Distributions: 
Application to Solar Extreme-Ultraviolet Spectra”, ApJ, 503, 450 
Kang, H., et al., 2003, “A Response Matrix Approach to the Reconstruction of Differential Emission Measure”, AAS/
SPD 34, 02.01, BAAS 35, p807 
Kang, H., et al. 2004, “Reconstructing Stellar DEMs from X-ray Spectra”, AAS/HEAD 8.0501 
Kang, H, et al. 2005, “Incorporating Atomic Data Errors in Stellar DEM Reconstruction", in X-Ray Diagnostics of 
Astrophysical PlasmasL Theory, Experiment, and Observation, AIP Conf. Proc., v774, p373



ful;λ = ∫ dlogT Gul;λ(T,ne) AZ   ne² dV/dlogT DEM(T)



ful;λ = ∫ dlogT Gul;λ(T,ne) AZ   ne² dV/dlogT DEM(T)



ful;λ = ∫ dlogT Gul;λ(T,ne) AZ   ne² dV/dlogT DEM(T)



Solar DEMs 
Nathan Stein

Stein, N.M., et al. 2012, “H-means Image Segmentation to Identify Solar Thermal Features”, In IEEE International 
Conference on Image Processing (ICIP). (student paper award finalist) 
Stein, N.M., 2014, “Detecting Thermal Features in Massive Streams of Solar Images”, in Big Data in Astro Statistics, 
Section on Statistical Learning and Data Mining, JSM

Unlike stellar gratings data, Solar data have high spatial resolution, low 
spectral and temporal resolutions.  Also, high data rate.  Large images in 

multiple filters at ≈12 sec cadence.

Bypass DEM generation and compute thermal segmentation directly 
from the data.











SDO/AIA 2010 Oct 2 05:57



SDO/AIA 2010 Oct 2 18:43



Sunspots: Cycle 
Yaming Yu / David Stenning

amplitude(next) ∼ 4.1 + 3.9 (amplitude / fall time) 
time to maximum(next) ∼ 8.5 – 0.43 amplitude(next) 

fall time(next) ∼ 4.3 + 0.43 amplitude(next)

Yu, Y., et al. 2012, “A Bayesian Analysis of the Correlations Among Sunspot Cycles”, Solar Physics, 281, 847 
Stenning, D., et al. 2014, “A Bayesian Analysis of the Solar Cycle Using Multiple Proxy Variables”, Current 
Trends in Bayesian Methodology with Applications, Editors: S. Upadhyay, D.K. Dey, U. Singh and A. 
Loganathan, Chapman & Hall/CRC Press, in press



Sunspots: Classification 
David Stenning

Stenning, D., et al. 2012, “Morphological Image Analysis and its Application to Sunspot Classification”, Statistical 
Challenges in Modern Astronomy V (Editors: G.J. Babu and E.D. Feigelson), Springer Verlag, New York, 2012  
Stenning, D., et al., 2013, “Morphological feature extraction for statistical learning with applications to solar image 
data”, in Statistical Analysis and Data Mining, DOI: 10.1002/sam.11200

α β β-γ β-γ-δ



Sunspots: Classification 
David Stenning

Stenning, D., et al. 2012, “Morphological Image Analysis and its Application to Sunspot Classification”, Statistical 
Challenges in Modern Astronomy V (Editors: G.J. Babu and E.D. Feigelson), Springer Verlag, New York, 2012  
Stenning, D., et al., 2013, “Morphological feature extraction for statistical learning with applications to solar image 
data”, in Statistical Analysis and Data Mining, DOI: 10.1002/sam.11200

α β β-γ β-γ-δ

Extract scatter for both polarities, relative strength, curvature of separator, and penumbral polarity overlaps



Sunspots: Classification 
David Stenning

Stenning, D., et al. 2012, “Morphological Image Analysis and its Application to Sunspot Classification”, Statistical 
Challenges in Modern Astronomy V (Editors: G.J. Babu and E.D. Feigelson), Springer Verlag, New York, 2012  
Stenning, D., et al., 2013, “Morphological feature extraction for statistical learning with applications to solar image 
data”, in Statistical Analysis and Data Mining, DOI: 10.1002/sam.11200

α β β-γ β-γ-δ

Extract scatter for both polarities, relative strength, curvature of separator, and penumbral polarity overlaps



Color-Magnitude Diagrams 
Paul Baines / Nathan Stein

Magnitude = –log(brightness) (relative to a standard) 
Color = difference in Magnitudes at different wavelengths

http://sciencevault.net/ibphysics/astrophysics/pics/hrdiagram1.gif

http://sciencevault.net/ibphysics/astrophysics/pics/hrdiagram1.gif


Color-Magnitude Diagrams 
Paul Baines / Nathan Stein

DeGennaro, S., et al. 2008, “Inverting Color-Magnitude Diagrams to Access Precise Star Cluster Parameters: A New 
White Dwarf Age for the Hyades”, ApJ, 696, 12 
van Dyk, D.A., et al. 2009, “Statistical Analysis of Stellar Evolution”, Annals of Applied Statistics, 3, 117 
Jeffery, E.J., et al., 2011, “The White Dwarf Age of NGC 2477”, ApJ, 730, 35 
Stein, N.M., et al. 2013, “Combining Computer Models to Account for Mass Loss in Stellar Evolution”, Statistical 
Analysis and Data Mining, 6, 34



logN-logS 
Nondas Sourlas / Paul Baines / Irina Udaltsova / Raymond Wong

Kong et al, 2003Kong et al. 2003, via A. Zezas

Wong, R., et al. 2014, "Automatic Estimation of Flux 
Distributions of Astrophysical Source Populations”, Annals 
of Applied Statistics, in press 
Udaltsova, I., et al., 2011, “log(N)-log(S): A Measuring Stick 
for the Universe”, SCMA V 
Udaltsova, I., et al., 2014a,b, in preparation



logN-logS 
Nondas Sourlas / Paul Baines / Irina Udaltsova / Raymond Wong

Kong et al, 2003Kong et al. 2003, via A. Zezas

Wong, R., et al. 2014, "Automatic Estimation of Flux 
Distributions of Astrophysical Source Populations”, Annals 
of Applied Statistics, in press 
Udaltsova, I., et al., 2011, “log(N)-log(S): A Measuring Stick 
for the Universe”, SCMA V 
Udaltsova, I., et al., 2014a,b, in preparation

Some recent capabilities:
✦ ability to determine number of segments
✦ hierarchical Bayesian modeling
✦ allow for detection efficiency
✦ multiple-Pareto models
✦ posterior predictive p-value checks
✦ base sensitivity limit



Luminosity Functions 
Alex Blocker

Blocker et al. 2009, X-ray Stacking for the Analysis of Faint Sources: A Bayesian Alternative,  
Proceedings of the conference held 22-25 September, 2009 in Boston, Chandra 



Luminosity Functions 
Lazhi Wang

Wang, L., et al. 2014, “Catalog-based X-ray Population Modeling”, in preparation



Luminosity Functions 
Lazhi Wang

∃ independently derived catalogs of sources (from optical/IR/radio observations)	


Question: Can we bypass X-ray detection process to infer properties of the underlying 

luminosity function?  Are detectable X-ray sources representative of the whole sample?

Wang, L., et al. 2014, “Catalog-based X-ray Population Modeling”, in preparation



Luminosity Functions 
Lazhi Wang

Wang, L., et al. 2014, “Catalog-based X-ray Population Modeling”, in preparation



Spatio-Spectral Disentangling 
David Jones

Jones, D., et al. 2014, “Disentangling Overlapping Astronomical Sources Using Spatial and 
Spectral Information”, in preparation

Orion Nebula Cluster 
ObsID 1522



Spatio-Spectral Source Disentangling 
David Jones

Jones, D., et al. 2014, “Disentangling Overlapping Astronomical Sources Using Spatial and 
Spectral Information”, in preparation

Orion Nebula Cluster 
ObsID 1522



Spectro-temporal Partitioning 
Raymond Wong

With high resolution available in both spectral and temporal regimes, compute a 2D Bayesian 
Blocks like partitioning of the data.  Segment data at points where both intensity and spectral 
shape change significantly.  Fit lines+continuum model to spectra in small time bins, compute 

likelihood that fitted spectra are different, group time bins with similar spectra.

Wong, R., et al. 2014, “Detecting Abrupt Changes in the Spectra of High-Energy 
Astrophysical Sources”, in preparation



Event Detection in Time Series 
Alex Blocker

Blocker, A., and Protopapas, P., 2013, “Semi-parametric Robust Event Detection for Massive 
Time-Domain Databases”, SCMA V, Springer-Verlag, p177; http://arxiv.org/abs/1301.3027

http://arxiv.org/abs/1301.3027
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Blocker, A., and Protopapas, P., 2013, “Semi-parametric Robust Event Detection for Massive 
Time-Domain Databases”, SCMA V, Springer-Verlag, p177; http://arxiv.org/abs/1301.3027

http://arxiv.org/abs/1301.3027


Event Detection in Time Series 
Alex Blocker

Blocker, A., and Protopapas, P., 2013, “Semi-parametric Robust Event Detection for Massive 
Time-Domain Databases”, SCMA V, Springer-Verlag, p177; http://arxiv.org/abs/1301.3027

Multi-stage analysis, first with simpler tools, then with model 
checking and uncertainty assessment.
Separate medium-frequency “candidates” from low-frequency 
trends and high-frequency noise via wavelet-based statistical 
fitting.

http://arxiv.org/abs/1301.3027


Real-time Light Curve Classification 
Dan Cervone



Real-time Light Curve Classification 
Dan Cervone



Real-time Light Curve Classification 
Dan Cervone

Eclipsing Binary



Real-time Light Curve Classification 
Dan Cervone

Cepheids



Real-time Light Curve Classification 
Dan Cervone

All types



Challenges 
Banff Higgs 

Paul Edlefsen

Edlefsen Liu, Dempster, “Estimating Limits from Poisson counting data using Dempster–Shafer analysis”, 2009 The Annals of Applied Statistics, Vol.3, 764, 
astro-ph 0812.1690

Introduction. This article addresses the problem of estimating a Poisson rate in the 
presence of additive and multiplicative noise, when additional measurements provide 
data for estimating the nuisance parameters. The problem of estimating rates from 
noisy or censored Poisson counting data arises in various subdisciplines of physics. In 
astrophysics, for example, the counts are photons emitted from a distant source. In 
particle accelerator experiments, the counts are indirect measurements of the number of 
particles produced by a high-energy collision. In such contexts the observed counts 
typically include some additive background noise, such as ambient particles.  In many 
cases there is also multiplicative noise, caused, for example, by photon censoring or 
particle decay, which further complicates the process of estimating the rate of interest. 
!

n ∼ Pois(ε ⋅ s + b) 
y ∼ Pois(t ⋅ b) 
z ∼ Pois(u ⋅ ε)



Challenges 
Strong Lens Time Delay Challenge 

Hyungsuk Tak

Tak et al 2014 Bayesian Approach to Time Delay Estimation


